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Cannabinoid Receptors as Target for Treatment of Osteoporosis: A Tale  
of Two Therapies 

Aymen I. Idris* 

Bone Research Group, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, 

EH4 2XU, UK 

Abstract: The central nervous system plays an important role in regulating bone metabolism in health and in disease with 

a number of neurotransmitters been reported to influence bone cell activity through a central relay. In keeping with this, 

recent studies demonstrated that endocannabinoids and their receptors are involved in the pathogenesis of osteoporosis. 

The endocannabinoids anandamide and 2-arachidonylglycerol are found in the skeleton and numerous studies also showed 

that bone cells express the cannabinoid receptors CB1 and CB2 and the orphan receptor GPR55. Pharmacological and genetic 

inactivation of CB1, CB2 and GPR55 in adult mice suppress bone resorption, increase bone mass and protect against bone 

loss, suggesting that inverse agonists/antagonists of these receptors may serve as anti-resorptive agents. In the ageing  

skeleton however CB1 and CB2 receptors have a protective effect against age-dependent bone loss in both male and female 

mice. CB1 receptor deficiency in aged mice results in accelerated age-dependent osteoporosis due to marked increase in 

bone resorption and significant reduction in bone formation coupled to enhanced adipocyte accumulation in the bone marrow 

compartment. Similar acceleration of bone loss was also reported in CB2 deficient mice of similar age but found to be  

associated with enhanced bone turnover. This review summarises in vitro and in vivo findings relating to the influence of 

cannabinoid ligands on bone metabolism and argues in favour of the exploitation of cannabinoid receptors as targets for 

both anabolic and anti-resorptive therapy for treatment of complex multifaceted bone diseases such as osteoporosis.  

Keywords: Cannabinoid, osteoporosis, bone, anti-resorptive, anabolic, Rimonabant
©

, CB1, CB2, GPR55. 

INTRODUCTION 

 The endocannabinoid system is a complex network of 
endogenous ligands, membrane receptors and metabolising 
enzymes (reviewed in [1]). Cannabinoids exert a plethora  
of pharmacological responses in mammalian cells and their  
receptors are known to be involved in the regulation of  
numerous physiological processes including neurotrans- 
mission, pain perception, learning, memory, cardiovascular 
homeostasis, appetite, motor function and the immune  
response (reviewed in [1-3]). The endocannabinoid ligands 
anandamide (AEA) and 2-arachidonylglycerol (2-AG) are 
responsible for most pharmacological actions associated with 
cannabinoid receptors in mammalian cells (reviewed in [4]). 
AEA and 2-AG are highly expressed in the brain and are also 
detected in a number of peripheral tissues including heart, 
liver, kidney, testis and blood [5-12]. Cannabinoid receptors 
are also activated by plant derived cannabinoids (phytocan-
nabinoids) such as 

9
-tetrahydrocannabinol (

9
-THC) and a 

number of synthetic non-classical cannabinoids such as 
CP55,940, JWH133 and HU308 [4]. A number of synthetic 
compounds including SR141716A (also known as Rimona-
bant

©
), AM251 and AM630 are described as inverse  

agonists/antagonists due to their ability to down regulate the 
activity of cannabinoid receptors in the presence and absence 
of agonist binding [13-21]. Endocannabinoids and their  
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synthetic analogues bind and activate two known cannabi-
noid receptors: CB1 and CB2, both of which are members of 
the G-protein coupled receptor family [22, 23]. CB1 and 
CB2 receptors are coupled to adenylyl cyclase and cyclic 
adenosine monophosphate (cAMP) together with a number 
of other second messengers including phospholipase C, PI3 
Kinase/Akt and ceramide synthesis [24-28]. Cannabinoid 
type 1 receptors (CB1) are mainly expressed in the brain, 
whereas cannabinoid type 2 receptors (CB2) are found in the 
periphery predominantly on cells of the immune system [29, 
30]. However, recent studies have reported that a number of 
other tissues, organs and cells including bone cells and  
adipocytes also express CB1 and CB2 receptors [31, 32]. 
Recent findings also suggest that the “orphan” G protein-
coupled receptor GPR55 might represent a third cannabinoid 
receptor [33, 34]. GPR55 is predominately expressed in the 
brain but also found in peripheral tissues such as spleen [35]. 
Cannabinoid ligands in particular AEA are also known to 
activate other targets such as the ligand gated transient recep-
tor potential vanilloid type 1 receptor (TRPV1) [36]. 

 Endocannabinoids and their receptors influence bone cell 
differentiation, survival and function. Identification by us 
and others of the role of CB1 and CB2 receptors in bone 
mass suggests that pharmacological modulation of these re-
ceptors are capable of suppressing excessive bone loss, a 
hallmark of a variety of bone diseases including osteoporo-
sis. Recently, it became apparent that other receptors and 
channels closely related to the endocannabinoid system – 
namely TRPV1 and GPR55 - are also implicated on the 
regulation of bone cell activity and bone mass. Together with 
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earlier findings, these studies consolidate the role of the 
skeletal endocannabinoid system as a regulator of bone re-
modelling and pave the way for identification of diverse 
novel therapeutic strategies through which it might be possi-
ble to modulate cannabinoid receptors and derive future 
treatments for bone disorders. 

Bone Remodelling 

 Bone is a cell-rich, metabolically active and specialised 
connective tissue that is continuously undergoing a process 
of renewal and repair known as “bone remodelling”. Bone 
remodelling is highly coordinated by various hormones,  
cytokines, and peptides and is divided into four stages,  
bone resorption, the reversal phase, bone formation and the 
quiescence phase (Fig. 1). Bone resorption is the process by 
which old bone is removed by the osteoclast; a large, 
multinucleated, motile and highly specialised cell of haema-
topoietic origin [37]. Following chemical stimuli, micro-
damage or mechanical stress, mature osteoclasts and their 
precursors migrate to the site which is to be resorbed by a 
mechanism not yet fully understood. Several investigators 
have proposed that embedded osteocytes within the bone 
matrix sense the need for remodelling and instruct the bone 
forming osteoblasts to secrete collagenases that remove un-
mineralised matrix and direct mature osteoclasts and their 
precursors to the remodelling site [38, 39]. Osteoclast forma-
tion and activity is controlled by the combined action of  

receptor activator of nuclear factor kappa-B ligand (RANKL) 
[40], osteoprotegerin (OPG) [41] and monocyte colony  
forming factor (M-CSF) [42] produced by cells of the  
osteoblastic lineage. RANKL and M-CSF represent the 
minimal essential stimulatory cytokines required for osteo-
clast formation under normal conditions whereas OPG is 
inhibitory [41]. The amount of bone resorbed is dictated by 
the number, size and the life span of newly formed osteo-
clasts that depended entirely on the level of local and  
systemic factors such as 1, 25-(OH)2 vitamin D3 (VD3) and 
parathyroid hormone (PTH) [43, 44]. Mature osteoclasts 
undergo rapid apoptosis and are rapidly removed by phago-
cytes thereby signalling the reversal phase that represents the 
intermediate period after resorption has ceased and before 
bone formation begins (Reviewed in [45]). 

 Fresh bone is laid down by the mononucleated os-
teoblasts that originate from mesenchymal osteoprogenitor 
cells found in the bone marrow (BM) [46]. Mesenchymal 
osteoprogenitors are multipotent cells which can also differ-
entiate into various cell types including adipocytes and 
chondrocytes [46]. Bone formation is initiated with the at-
traction of osteoblast precursors to the freshly resorbed site 
by the chemotactic transforming growth factor  (TGF ) and 
bone matrix proteins such as type-1 collagen, which are both 
released during the resorption process [47, 48]. A number of 
systemic hormones including PTH, oestrogen and VD3 are 
also known to stimulate the differentiation of precursor cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The bone remodelling cycle. Upon stimulus, embedded osteocytes within the bone matrix attract osteoclasts and their precursors to 

the remodelling site. Mature osteoclasts first attach to bone surface and then resorb the bone matrix (bone resorption). Following resorption 

and osteoclast apoptosis, there is a reversal phase during which osteoblast recruitment and proliferation occurs. Fully differentiated osteoblast 

deposit osteoid on the resorption site thereby initiating bone formation. Bone formation is followed by a phase during which freshly laid 

osteoid becomes mineralised and covered by bone lining cells. 
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into mature osteoblast capable of matrix synthesis and bone 
formation [46]. The average lifespan of human osteoblasts is 
three month, after which approximately 65% of functioning 
osteoblasts undergo apoptosis [49]. The remaining mature 
osteoblasts are either buried within the newly deposited  
matrix as osteocytes or converted to lining cells that cover 
the majority of quiescent bone [50]. 

Abnormal Bone Remodelling and its Relation to  

Osteoporosis 

 Imbalance in bone formation and bone resorption caused 
predominately by changes in local and systemic factors is the 
major common cause of most - if not all - bone disorders. 
Osteoporosis is a metabolic disorder characterised by dispar-
ity in osteoblast and osteoclast activity leading to gradual 
deterioration of bone mass and enhanced bone fragility and 
fracture risk (reviewed in [51]). Osteoporotic fractures repre-
sent one of the main causes of morbidity among elderly pa-
tients across the developing world [52-60]. The most com-
mon causes of osteoporosis are oestrogen deficiency and 
glucocorticoid treatment both of which are associated with 
enhanced bone resorption coupled to a significant reduction 
in bone formation [51]. In postmenopausal osteoporosis, 
oestrogen deficiency is associated with two distinct phases of 
bone loss characterised by different cellular pattern and be-
haviour [61]. The acute phase of bone loss that immediately 
follows oestrogen withdrawal is characterised by excessive 
bone resorption. This is caused by rapid rise in osteoclast 
number that is coupled to a marked increase in osteocyte and 
osteoblast apoptosis [62, 63]. At the molecular level, sudden 
drop in oestrogen is associated with raised levels of RANKL 
and M-CSF coupled to a significant drop in the production of 
inhibitory factors such as OPG [64]. This phase is followed 
by a long lasting period of sustained age-dependent bone loss 

due to a significant reduction in osteoblast differentiation 
and bone formation coupled to marked increase in adipocyte 
differentiation [65-67]. Long-term treatment with glucocorti-
coids is the most common cause of secondary osteoporosis 
(reviewed in [68]). At the cellular level, glucocorticoids 
regulate both bone formation and resorption by inhibiting 
osteoblast differentiation and reducing the production of 
factors that enhance osteoclast formation such as RANKL 
[68, 69]. A number of other skeletal disorders such as rheu-
matoid arthritis (reviewed in [70, 71]) and cancer associated 
bone diseases (reviewed in [72]) are also characterised by 
excessive bone resorption leading to bone loss.  

NEURONAL MEDIATORS OF BONE REMODEL-

LING  

 The central nervous system (CNS) plays an important 
role in regulating bone remodelling, with a number of neuro-
transmitters and systemic hormones been reported to influ-
ence bone mass through a central relay (Table 1) [73, 74]. 
For example, glutamate and N-methyl-d-aspartate receptors 
are present on osteoblasts and osteoclasts and regulate bone 
turnover by stimulating osteoblast differentiation and func-
tion (Reviewed in [75]). Nitric oxide is known to play a role 
in regulating bone remodelling at the local level [76], but 
recent studies showed that mice lacking neuronal nitric oxide 
synthase display high bone mass due to low bone turnover 
[77]. Pituitary-derived hormones such as thyroid and follicle 
stimulating hormones are also involved in the regulation of 
bone remodelling by influencing osteoclast and osteoblast 
differentiation [78, 79]. Bearing in mind that mammalian 
bones are widely innervated by sympathetic and sensory 
nerves [80-83] and that activation of the sympathetic nervous 
system (SNS) is known to regulate bone formation and re-
sorption [84, 85], it is reasonable to suggest that a number of 

Table 1. Neuronal Mediators with Reported Influence on Bone Mass and Cell Differentiation and Function 

Ligands Osteoblast Osteoclast 

Glutamate  Osteoblast differentiation  Osteoclast formation 

Nitric oxide  Osteoblast differentiation  Osteoclast formation 

Leptin  Osteoblast differentiation  Osteoclast formation 

Neuropeptide Y  Osteoblast differentiation  Osteoclast formation 

Thyroid stimulating hormone  Osteoblast differentiation  Osteoclast formation 

Follicle stimulating hormone  Osteoblast differentiation  Osteoclast formation 

Noradrenaline   Osteoblast differentiation  Osteoclast formation 

Cannabinoid receptor 1  Osteoblast differentiation  Osteoclast formation 

 Bone resorption 

Cannabinoid receptor 2  Osteoblast differentiation  Osteoclast formation 

 Bone resorption 

TRPV1 agonists N/T  Osteoclast formation 

GPR55 agonists  Osteoblast differentiation  Osteoclast formation 

N/T denote non-tested. 
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these factors may regulate bone turnover through a central 
relay.  

 Neuropeptide Y (NPY) is expressed widely in the central 

and peripheral nervous systems. Studies showed that specific 
deletion of the hypothalamic NPY receptors results in a high 

bone mass phenotype due to enhanced osteoblast differentia-

tion and bone formation [86], confirming the involvement of 
the CNS in the regulation of bone growth. Recently, studies 

examining the role of the adipocyte-derived hormone leptin 

in bone remodelling, made substantial advances in our un-
derstanding of the mechanisms by which the central and pe-

ripheral nervous systems control bone remodelling (Re-

viewed in [73, 74]). Takeda et al. showed that leptin reduced 
bone formation and mass through a neuronal hypothalamic 

relay involving inhibition of -adrenergic neurones within 

the sympathetic nervous system (Fig. 2) [87, 88]. Later  
work by the same group added that beta-2-adrenoreceptor 

indirectly influences osteoclastic bone resorption by regulat-

ing expression of RANKL on osteoblasts [89]. We have  
recently found evidence that pharmacological activation of 

-adrenergic receptors can also stimulate osteoclast forma-

tion directly by acting on osteoclast precursors indicating 
that -adrenergic receptors can directly and indirectly modu-

late osteoclast formation and function (Fig. 2) [90]. These 

studies together provided evidence for the notion of so-called 
neurogenic relay which controls bone turnover and also  

encouraged research into uncovering the role of other neuro-

transmitters on bone remodelling.  

THE SKELETAL ENDOCANNABINOID SYSTEM  

Cannabinoids and their Receptor Expression in Bone  

 A number of recent studies reported that endocannabi-
noids and their metabolising enzymes are present in the 
skeleton. AEA and 2-AG are present in the bone marrow and 
within the metabolically-active trabecular compartment, at 
levels in the same magnitude as the brain [12, 91]. Both os-
teoblasts and osteoclasts are capable of producing AEA and 
2-AG in culture [12, 91, 92]. Complementary to these find-
ings, a number of cell types within the bone micro-
environment including osteoblasts, osteoclasts, osteocytes, 
stromal cells and adipocytes are found to express the endo-
cannabinoid metabolising enzymes NAPE-phospholipase D, 
fatty acid amide hydrolyse, diacylglycerol lipases and 
monoacylgycerol lipase (our unpublished data; [12, 93]). The 
cannabinoid receptors CB1 and CB2 and a number of closely 
related receptors and channels such as GPR55 and TRPV1 
are found in the skeleton. CB1 receptors are known to be 
expressed on nerve fibres intervening bone [12, 94] and on 
cells of the immune system within the BM compartment [2, 
30]. We and others reported that CB1 receptors are also de-
tected on osteoblasts, osteoclasts and BM derived adipocytes 
at both protein and mRNA levels [95, 96]. CB2 receptors on 
the other hand are highly expressed on peripheral blood 
mononucleated cells and immune cells including macro-
phage, monocytes, B and T lymphocytes [26, 30, 97-100]. 
Osteoblasts, osteoclasts and osteocytes also express CB2 
receptors at significantly higher level than that reported for 
CB1 [31, 32, 93, 96]. Recent studies reported that bone cells 
also express GPR55 and TRPV1 which are known to be tar-

geted by endocannabinoids and synthetic cannabinoid 
ligands [36, 96, 101, 102, 111]. 

Cannabinoid Inverse Agonists/Antagonists as Anti-
Resorptive Agents 

 The prevention and treatment of excessive bone resorp-
tion is based on the use of anti-resorptive agents such as 
Bisphosphonates and calcitonin. Anti-resorptive drugs are a 
class of therapeutic agents that selectively/specifically target 
and inhibit osteoclast differentiation and function with mini-
mal direct activity toward osteoblasts (Reviewed in [103, 
104]). We have found that CB1 and CB2 expression on 
osteoclast and their BM precursor cells is highly up regulated 
in ageing mice and following oestrogen deficiency in adult 
mice [95]. To determine the relevance of this finding, we 
studied the effects of CB1 receptor inactivation on bone loss 
in ovariectomised mice, a well established model of acute 
bone loss following oestrogen deficiency [105]. We reported 
that mice lacking CB1 receptors are protected from ovariec-
tomy-induced bone loss and exhibited reduced osteoclast 
number and bone resorption in comparison to wild type lit-
termates [32]. We also showed that CB1 deficiency in 
healthy mice results in accelerated bone growth in neonate 
and high bone mass in adult mice due to reduced osteoclast 
number and bone resorption [32]. Surprisingly, the number 
of osteoblasts and all parameters of bone formation remains 
unaffected by CB1 deficiency during growth and early 
adulthood [32, 95]. In contrast, CB2 deficient mice of similar 
age showed no significant changes in bone mass [31, 106]. 
Based on these findings, it is clear that CB1 receptors regu-
late osteoclastic bone resorption in adult mice and that under 
conditions of increased bone turnover these receptors may 
regulate bone loss. Interestingly, recent studies have reported 
that adult mice deficient in the orphan receptor GPR55 dis-
play increased peak bone mass due to a significant defect on 
osteoclastogenesis but the number of osteoblasts remains 
unaffected [107]. The skeletal abnormalities reported in 
GPR55 KO mice were remarkably similar to those observed 
in CB1 deficient mice [32]. Bearing in mind that GPR55 is 
activated by a number of cannabinoids ligands including 
endocannabinoids and the CB1 selective agonist AM251 
[108, 109], it is likely that GPR55 is involved in the regula-
tion of endocannabinoids action in osteoclastic bone resorp-
tion.  

 Over recent years, we have extensively tested whether 
pharmacological blockage of cannabinoid receptors may be 
of value in the prevention of acute bone loss. In our studies, 
we demonstrated that treatment with the CB1 selective in-
verse agonist/antagonist AM251 and the CB2 selective in-
verse agonist/antagonist AM630 reduced osteoclast number 
and bone resorption in vivo and protected against ovariec-
tomy induced bone loss in adult mice [32, 95]. Other work-
ers reported that the novel CB2 selective antagonist Sch.036 
prevented inflammation and bone damage in arthritic mice 
[110]. Interestingly, genetic inactivation of CB2 receptors in 
adult mice only partially protected from bone loss due to 
ovariectomy [106]. This suggests that prevention of bone 
loss following treatment with CB2 selective inverse agonists/ 
antagonists such as AM630 and Sch.036 may occur at least 
in part by an effect on CB1 receptors. Nevertheless, these 
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findings together confirm the anti-resorptive capabilities of 
cannabinoid receptor - in particular CB1 - blockage in ani-
mal models of acute bone loss (Fig. 3). 

 A number of in vitro studies have recently shed light on 
the mechanisms by which cannabinoid receptor blockage 
regulate osteoclastogenesis. For example, the CB1 selective 
inverse agonists/antagonists AM251 and Rimonabant

© 
and

 

the CB2 selective inverse agonist/antagonist AM630 are 

capable of exerting direct inhibitory effects on osteoclast 
formation, fusion, polarisation and activity [32]. Recent stud-
ies in our laboratories demonstrated that cannabinoid recep-
tors also regulate osteoclastogenesis by indirectly influenc-
ing “osteoblast-osteoclast coupling” (Fig. 2). For example, 
we showed that osteoclast formation is significantly reduced 
in osteoblast – bone marrow co-cultures in which the osteo- 
blasts were prepared from CB1KO mice [95, 106]. Further  
studies showed that osteoblast cultures generated from 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Schematic illustration of the current model of local and systemic regulation of bone cell differentiation and function by cannabinoid 

ligands. Leptin regulates bone mass through a neuronal hypothalamic relay involving -adrenergic neurones and endocannabinoid system 

within the sympathetic nervous system (SNS). Noradrenaline is known to increase bone loss by stimulating osteoclast formation and resorp-

tion. Cannabinoid receptors are likely to influence the hypothalamic action of leptin on bone formation by a central relay. Moreover, mature 

osteoblasts express CB1 and CB2 receptors and secrete AEA and 2-AG that in turn enhance RANKL induced osteoclast formation, thereby 

influencing osteoblast-osteoclast coupling. Cannabinoid ligands (CBL) are also involved in the regulation of osteoclast survival, polarisation 

and activity by acting on CB1 and CB2 receptors expressed on mature osteoclasts. CBL are capable of regulating bone formation by either 

directly acting on CB1 and CB2 receptors on osteoblasts or indirectly by inhibiting the production of the catecholamine noradrenaline, an 

inhibitor of osteoblast differentiation. Acting on CB1 receptors expressed on BM stromal cells, cannabinoid receptor agonists stimulate os-

teoblast differentiation and inhibit adipocyte accumulation in the bone marrow. TRPV1 and GPR55 expressed by osteoblasts and osteoclasts 

are likely to be responsible for some of the skeletal action of AEA and other cannabinoid ligands. Abbreviation: SNS - sympathetic nervous 

system; CB – cannabinoid; RANKL - receptor activator of NF B ligand; VD3 – vitamin D3, M-CSF - macrophage colony stimulating factor; 

cfms - M-CSF receptor; NA – noreadrenaline; AEA – anandamide; CBD – cannabidiol. Question mark (?) denotes unknown factors. 
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CB1KO mice express less RANKL therefore confirming the 
reduced capabilities of these osteoblast to support osteoclast 
formation normally [95]. Cannabinoid receptor activation 
using the endocannabinoids AEA and 2-AG, CB1/2 syn-
thetic agonist CP55,940 and CB2 selective agonist JWH133 
and HU308 enhance osteoclast number, increase osteoclast 
size and multinuclearity and stimulate bone resorption [32, 
92, 106]. As with CB1 and CB2 selective agonists, TRPV1 
and GPR55 receptor agonists are also capable of increasing 
osteoclast number in human and mouse cultures [96, 107]. A 
recent study in our laboratories showed that the TRPV1 ago-
nist capsaicin enhances osteoclast formation, whereas the 
antagonist capsazepine suppressed osteoclast and osteoblast 
differentiation and function in vitro and inhibited ovariec-
tomy induced bone loss in mice by reducing indices of bone 
resorption and bone formation [111]. These results together 
with earlier findings reported by Rossi and colleagues [96] 
clearly demonstrate that pharmacological blockade of 
TRPV1 ion channels is capable of inhibiting osteoclastic 
bone resorption and as a result protects against bone loss in 
animal model of osteoporosis [96, 111]. Bearing in mind that 
cannabinoid receptors, TRPV1 and GPR55 are known to  
co-exist in a number of cells including osteoclasts and  
osteoblasts [107, 112-115], it is possible that some of  
cannabinoids actions may actually be mediated via TRPV1, 
GPR55 and/or other unknown mechanism(s). In keeping 
with this, we and others found evidence that activation of 
CB2 – using the CB2 selective agonists HU308 and ajulemic 
acid - inhibits osteoclast formation under certain conditions 
by an unknown mechanism(s) [31, 106, 107, 116]. Regard-
less of this, it is clear that cannabinoid receptor inverse  
agonists/antagonists show value as anti-resorptive agents  

for the prevention of osteoporosis and other bone diseases 
characterised by increased osteoclast activity (Fig. 3). 

Endocannabinoids and Synthetic Cannabinoid Agonists 

as Bone Anabolic Agents 

 Bone formation plays a critical role in age-related bone 
loss and the pathogenesis of a number of bone diseases in-
cluding postmenopausal and drug-induced osteoporosis [51]. 
In recent years, extensive research into pathways involved in 
the regulation of osteoblast differentiation and activity has 
led to the discovery of a number of bone anabolic agents that 
stimulate bone formation such as exogenous PTH (also 
known as teriparatide or Forteo©) (Reviewed in [117]).  
Endocannabinoids and their receptors are involved in the 
regulation of osteoblast differentiation and bone formation 
(Fig. 2). The first evidence supporting a potential effect of 
cannabinoids on bone formation came from two independent 
studies examining the role of leptin on food intake and en-
ergy metabolism. Ducy et al. showed that leptin, acting on 
the hypothalamus, influences bone remodelling by nega-
tively regulating bone formation [87]. Complementing this 
finding, Ravinet et al. reported that genetic inactivation of 
CB1 receptors reduces leptin levels and body weight in ex-
perimental animals [118]. Together these studies suggest that 
CB1 receptors influence - at least in part - the effects of 
leptin in osteoblast activity and bone formation (Fig. 2). We 
and others showed that the endocannabinoids AEA and 2-
AG, the synthetic CB1/2 agonist CP55,940 and CB2 selec-
tive agonists HU308 and JWH133 stimulate early differen-
tiation of BM derived osteoblast precursors and enhance 
bone nodule formation in osteoblast cultures in vitro (Fig. 2) 
[31, 93, 119]. Conversely, treatment with the CB receptor 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Hypothetical model for prevention and treatment of postmenopausal osteoporosis using cannabinoid ligands. Cannabinoid 

receptors play a role in regulating osteoclast and osteoblast differentiation and activity in the ageing skeleton. Osteoblast and osteoclast activ-

ity are balanced during skeletal growth and early adulthood. Following oestrogen deficiency after menopause, acute bone loss occurs due to a 

significant rise in osteoclast number. During this phase, cannabinoid receptor inverse agonists/antagonists may prevent excessive bone loss 

by reducing osteoclast number and bone resorption. Activation of cannabinoid receptors using cannabinoid agonist may restore bone loss 

incurred during the prolonged phase of bone loss by promoting osteoblast differentiation and bone formation. 
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inverse agonist/antagonist AM251 suppresses osteoblast 
number and function acting on CB1 receptors [95, 106, 119]. 
We and others also showed that BM stromal cells from CB1 
and CB2 deficient mice had a significantly reduced capacity 
to form mineralised bone nodules when cultured in os-
teogenic medium and had lower expression of the osteoblast 
specific alkaline phosphatase and core binding factor alpha1 
(Cbfa1) [31, 95], indicating that endocannabinoids and their 
receptors are capable of exerting a cell autonomous effect on 
osteoblast and their precursors (Fig. 2). 

 In most of osteoporotic patients, sustained bone loss is 
mainly due to significant reduction in osteoblast number and 
bone formation (Fig. 3) [65, 67]. It was reported that CB2 
causes accelerated age-related osteoporosis due to enhanced 
bone turnover [31]. In our studies however we found that 
bone loss in ageing CB2 deficient mice is associated with 
elevated bone resorption coupled to a significant reduction in 
osteoblast number and bone formation [93]. In agreement 
with this, activation of the peripherally abundant CB2 recep-
tors, using JWH133 or HU308, protected against bone loss 
in ovariectomised mice by increasing bone formation mark-
ers [31, 93]. These findings - together with evidence showing 
strong association of CB2 polymorphisms with osteoporosis 
in women [120, 121] – suggest that CB2 agonists show 
promise for the treatment of osteoporosis as stimulator of 
bone formation (Fig. 3). However a recent study using the 
mouse traumatic brain injury model to investigate the role of 
cannabinoid receptors in bone formation revealed that CB1 – 
not CB2 – receptor activation is responsible for increased 
bone formation following brain injury [12]. The authors of 
this report went on to suggest that activation of CB1 present 
on presynaptic nerve endings influence new bone formation 
by suppressing the release of noradrenaline, an inhibitor of 
osteoblast activity [12, 122]. Taking into account all findings 
to date, it is clear that cannabinoid receptor - in particular 
CB1 - activation regulates osteoblast differentiation and 
function by directly acting on bone cells and/or indirectly 
influencing the release of systemic mediators of bone forma-
tion such as noradrenaline (Fig. 2).  

 Encouraged by these findings, we recently investigated 
the effects of pharmacological and genetic modulation of 
CB1 receptors on osteoblast differentiation and function in 
ageing osteoporotic mice. We reported that CB1 deficiency 
profoundly worsen osteoporosis in 12 month old female 
mice and resulted in marked loss of bone in male mice of 
similar age [95]. Detailed histological analysis in our studies 
showed that CB1 deficiency at this age was associated with a 
significant reduction in osteoblast number and bone forma-
tion resulting in a significant bone loss despite of the signifi-
cant reduction in osteoclast number (Fig. 3) [32, 95]. This 
has led us to conclude that age-related osteoporosis associ-
ated with CB1 deficiency is not due to increased bone re-
sorption, but is instead due to reduced osteoblast differentia-
tion and bone formation. Osteoporosis in CB1 KO mice was 
also associated with a striking accumulation of adipocytes in 
the BM compartment [95]. Studies conducted on bone mar-
row stromal cells (MSC) – a common precursor to adipocyte 
and osteoblast - revealed that cultures deficient in CB1 re-
ceptors showed a significant reduction in osteoblast differen-
tiation mainly due to an increased capacity of MSC to differ-

entiate into adipocytes [95]. This shift in lineage commit-
ment is coupled to a significant down regulation of the os-
teoblast specific gene Cbfa1 in osteoblasts and upregulation 
of cAMP response element binding (CREB) phosphorylation 
in preadipocytes [95]. All these effects were reproduced 
pharmacologically in wild type cultures by treating with the 
CB1 selective inverse agonist/antagonist AM251 [95]. How-
ever the pharmacological effects of cannabinoid receptor 
modulation in adipocyte differentiation reported in the litera-
ture are difficult to interpret. For example, endocannabinoids 
are reported to activate the expression of the adipogenic gene 
peroxisome proliferator-activated receptor gamma (PPAR ), 
a powerful stimulator of adipocyte differentiation [123, 124]. 
Conflicting reports showed that the CB1 selective ago-
nist/inverse antagonist Rimonabant

©
 inhibits cell prolifera-

tion but increases markers of adipocyte maturation in preadi-
pocyte cultures [125]. In broad agreement with the latter, we 
showed that treatment with the CB1 selective agonist/inverse 
antagonist AM251 inhibits stromal cell differentiation but 
increases adipocyte differentiation and enhances the expres-
sion of adipocyte specific genes such as Fatty acid-binding 
protein 4, Ccaat-enhancer-binding proteins C/EBP  and 
C/EBP  ([95] and Idris et al. unpublished data). Whilst these 
findings raise the possibility that long term use of cannabi-
noid receptor inverse agonists/antagonists may suppress os-
teoblast differentiation and enhance adipogenesis in the bone 
marrow, they also provide an explanation for the stimulatory 
effect of cannabinoid agonists on osteoblast activity and 
bone formation. 

CONCLUDING REMARKS AND FUTURE PER- 

SPECTIVE 

 There is a steadily growing body of evidence suggesting 
that the skeletal endocannabinoid system plays an important 
role in the regulation of bone mass in health and in disease. 
Cell and tissue based studies showed that bone cells express 
cannabinoid receptors and the machinery for the synthesis 
and breakdown of endocannabinoids, thereby indicating that 
endocannabinoids influence bone remodelling acting on CB1 
and CB2 receptors expressed on bone cells. Expression of 
CB1 within innervating neurones however raises the possi-
bility that cannabinoids regulate bone mass by a neuronal 
mechanism. To fully address this issue, future studies should 
examine the bone phenotype of animals with site specific 
inactivation/overexpression of cannabinoid receptors. Ge-
netic and pharmacological studies in adult mice, CB1 and 
CB2 receptor inverse agonists/antagonists show promise as 
anti-resorptive agents. On the basis of recent reports of de-
pression and suicidal behaviour associated with the use of 
the CB1 receptor selective inverse agonist Rimonabant

©
, it is 

clear that the eagerly awaited peripherally-active cannabi-
noid agents that don’t cross the blood-brain barrier would be 
of substantial clinical value for treatment of bone diseases. 
Future studies with such compounds should examine the 
effects of long term blockage of cannabinoid receptors on the 
activity of osteoblast and other cells such as osteocytes and 
adipocytes. Such studies should also establish whether 
pharmacological action of cannabinoid ligands is mediated 
via CB1/CB2 independent targets such as GPR55 and 
TRPV1. The role of cannabinoid receptors on osteoblast 
activity and bone formation is interesting and suggests that 
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endocannabinoids possess bone anabolic capabilities. Of the 
endogenous cannabinoid ligands discovered to date, only 
AEA and 2-AG have been investigated in bone. Future stud-
ies should therefore assess the bone anabolic capabilities of 
endocannabinoid structurally-related derivatives such as vi-
rodhamine, noladin ether, N-arachidonoyl dopamine and 

9
-

THC in ageing rodents and most importantly compare their 
efficiency to that of well-established bone anabolic agents 
such as PTH. The outcome of such studies will greatly en-
hance our understanding of the role of the skeletal endocan-
nabinoid system in bone pathologies and encourage the de-
velopment of cannabinoid-based therapy aimed at providing 
both anti-resorptive and anabolic effects in bone. 
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ABBREVIATIONS  

2-AG = 2-arachidonylglycerol 

AEA = Anandamide 

BM = Bone marrow 

C/EBP = Ccaat-enhancer-binding protein 

cAMP = Cyclic adenosine monophosphate 

CB = Cannabinoid 

Cbfa1 = Core binding factor alpha1 

CNS = Central nervous system 

9
-THC = 

9
-tetrahydrocannabinol 

DAGL = Diacylglycerol lipase 

FAAH = Fatty acid amide hydrolase 

M-CSF = Macrophage colony stimulating factor 

MSC = Bone marrow stromal cells 

NAPE = N-arachidonoyl phosphatidylethanolamine  

NPY = Neuropeptide Y 

OPG = Osteoprotegerin 

PI3K = Phosphoinositide 3-kinase  

PKA = Protein Kinase A 

PLC = Phospholipase C 

PPAR  = Peroxisome proliferator-activated receptor 
gamma 

PTH = Parathyroid hormone 

RANKL = Receptor activator for NF B ligand 

SNS = Sympathetic nervous system 

TBI = Traumatic brain injury 

TGF  = Transforming growth factor-beta 

TNF  = Tumour necrosis factor-alpha 

TRPV1 = Transient receptor potential vanilloid type 1 
receptor 

VD3 = 1, 25-(OH)2 vitamin D3 
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