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Abstract

Background: Metabolic therapy using ketogenic diets (KD) is emerging as an alternative or complementary approach

to the current standard of care for brain cancer management. This therapeutic strategy targets the aerobic fermentation

of glucose (Warburg effect), which is the common metabolic malady of most cancers including brain tumors. The

KD targets tumor energy metabolism by lowering blood glucose and elevating blood ketones (β-hydroxybutyrate).

Brain tumor cells, unlike normal brain cells, cannot use ketone bodies effectively for energy when glucose becomes

limiting. Although plasma levels of glucose and ketone bodies have been used separately to predict the therapeutic

success of metabolic therapy, daily glucose levels can fluctuate widely in brain cancer patients. This can create difficulty

in linking changes in blood glucose and ketones to efficacy of metabolic therapy.

Methods: A program was developed (Glucose Ketone Index Calculator, GKIC) that tracks the ratio of blood glucose to

ketones as a single value. We have termed this ratio the Glucose Ketone Index (GKI).

Results: The GKIC was used to compute the GKI for data published on blood glucose and ketone levels in humans

and mice with brain tumors. The results showed a clear relationship between the GKI and therapeutic efficacy using

ketogenic diets and calorie restriction.

Conclusions: The GKIC is a simple tool that can help monitor the efficacy of metabolic therapy in preclinical animal

models and in clinical trials for malignant brain cancer and possibly other cancers that express aerobic fermentation.

Keywords: Glucose, Beta-hydroxybutyrate, Calorie restriction, Metabolic therapy, Glioblastoma, Warburg effect,

Ketogenic diet, Ketone bodies

Introduction

Dietary therapy using ketogenic diets is emerging as an

alternative or complementary approach to the current

standard of care for brain cancer management. Progno-

sis remains poor for malignant gliomas in both children

and adults [1-5]. Although genetic heterogeneity is ex-

tensive in malignant gliomas [6-8], the Warburg effect

(aerobic fermentation of glucose) is a common metabolic

malady expressed in nearly all neoplastic cells of these and

other malignant tumors [9-11]. Aerobic fermentation

(Warburg effect) is necessary to compensate for the insuf-

ficiency of mitochondrial oxidative phosphorylation in the

cells of most tumors [9,12-14]. Mitochondrial structure

and function is abnormal in malignant gliomas from both

mice and humans [15-19]. Normal brain cells gradually

transition from the metabolism of glucose to the metabol-

ism of ketone bodies (primarily β-hydroxybutyrate and

acetoacetate) for energy when circulating glucose levels

become limiting [20,21]. Ketone bodies are derived from

fatty acids in the liver and are produced to compensate for

glucose depletion during periods of food restriction [20].

Ketone bodies bypass the glycolytic pathway in the cyto-

plasm and are metabolized directly to acetyl CoA in the

mitochondria [22]. Tumor cells are less capable than nor-

mal cells in metabolizing ketone bodies for energy due to

their mitochondrial defects [2,12,23].

Therapies that can lower glucose and elevate ketone

bodies will place more energy stress on the tumor cells

than on the normal brain cells [12,24]. This therapeutic

strategy is illustrated conceptually in Figure 1, as we* Correspondence: thomas.seyfried.1@bc.edu
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previously described [25]. However, daily activities and

emotional stress can cause blood glucose levels to vary

making it difficult for some people to enter the predicted

zone of metabolic management [26]. A more stable meas-

ure of systemic energy metabolism is therefore needed to

predict metabolic management of tumor growth. The ratio

of blood glucose to blood ketone bodies β-hydroxybutyrate

(β-OHB) is a clinical biomarker that could provide a better

indication of metabolic management than could measure-

ment of either blood glucose or ketone body levels alone.

Methods

The ‘Glucose Ketone Index’ (GKI) was created to track

the zone of metabolic management for brain tumor

management. The GKI is a biomarker that refers to the

molar ratio of circulating glucose over β-OHB, which is

the major circulating ketone body. A mathematical tool

called the Glucose Ketone Index Calculator (Additional

file 1) was developed that can calculate the GKI and moni-

tor changes in this parameter on a daily basis (Equation 1).

The GKIC generates a single value that can assess the re-

lationship of the major fermentable tumor fuel (glucose)

to the non-fermentable fuel (ketone bodies). Because many

commercial blood glucose monitors give outputs in mg/dL,

rather than millimolar (mM), the GKIC converts the units

to millimolar. Included in the program is a unit converter

for both glucose and ketones (β-OHB), which can convert

glucose and ketone values from mg/dL to mM and from

mM to mg/dL (Equations 2, 3, 4, 5). The molecular

weights used for calculations in the GKIC are 180.16 g/mol

for glucose and 104.1 g/mol for β-OHB, which is the major

circulating ketone body measured in most commercial

testing kits. The unit converter allows for compatibility for

a variety of glucose and ketone testing monitors.

Glucose Ketone Index½ � ¼ Glucose mg=dLð Þ½ �
�

18:016
g � dL

mol

� �

Ketone mMð Þ½ �

ð1Þ

Glucose mg=dLð Þ½ � ¼ Glucose mMð Þ½ �

� 18:016 g �
dL

mol

� �

ð2Þ

Glucose mMð Þ½ � ¼
Glucose mg=dLð Þ½ �

18:016 g � dL
mol

� � ð3Þ

Ketone mg=dLð Þ½ � ¼ Ketone mMð Þ½ �

� 10:41 g �
dl

mol

� �

ð4Þ

Ketone mMð Þ½ � ¼
Ketone mg=dLð Þ½ �

10:41 g � dl
mol

� � ð5Þ

The GKIC can set a target GKI value to help track

therapeutic status. Daily GKI values can be plotted to

allow visual tracking of progress against an initial index

value over monthly periods. Entrance into the zone of

metabolic management would be seen as the GKI value

falls below the set target value (as illustrated in Figure 2).

Additionally, the GKIC can track the number of days

that an individual falls within the predicted target zone.

Results

The GKIC was used to estimate the GKI for humans

and mice with brain tumors that were treated with either

calorie restriction or ketogenic diets from five previously

Figure 1 Relationship of plasma glucose and ketone body levels to brain cancer management. The glucose and ketone (β-OHB) values

are within normal physiological ranges under fasting conditions in humans. We refer to this state as the zone of metabolic management. As

blood glucose falls and blood ketones rise, an individual is predicted to reach the zone of metabolic management. Tumor progression is predicted to

be slower within the metabolic target zone than outside of the zone. This can be tracked utilizing the Glucose Ketone Index. The dashed lines signify

the variability that could exist among individuals in reaching a GKI associated with therapeutic efficacy.
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published reports (Table 1). The first clinical study eval-

uated two pediatric patients; one with an anaplastic as-

trocytoma, and another with a cerebellar astrocytoma

[27]. Both individuals were placed on a ketogenic diet

for eight weeks. During the 8-week treatment period,

GKI dropped from about 27.5 to about 0.7 – 1.1 in the

patients. The patient with the anaplastic astrocytoma,

who did not have a response to prior chemotherapy, had

a 21.7% reduction in fluorodeoxyglucose uptake at the

tumor site (no chemotherapy during diet). The patient

with the cerebellar astrocytoma received standard chemo-

therapy concomitant with the ketogenic diet. Fluorodeox-

yglucose uptake at the tumor site in this patient was

reduced by 21.8%. Quality of life was markedly improved

in both children after initiation of the KD [27].

The second clinical study evaluated a 65-yr-old woman

with glioblastoma multiforme [28]. The patient was

placed on a calorie-restricted ketogenic diet (600 kcal/

day) concomitant with standard chemotherapy and radi-

ation, without dexamethasone, for eight weeks. The pa-

tient’s GKI decreased from 37.5 to 1.4 in the first three

weeks of the diet. No discernible brain tumor tissue was

detected with MRI in the patient at the end of eight weeks

of the calorie restricted ketogenic diet. It is also important

to mention that the patient was free of symptoms while

she adhered to the KD. Tumor recurrence occurred

10 weeks after suspension of the ketogenic diet.

The third study, a preclinical mouse study, evaluated

the effects of diets on an orthotopically implanted CT-

2A syngeneic mouse astrocytoma in C57BL/6 J mice

[29]. Mice were implanted with tumors and fed one of

four diets for 13 days: 1) standard diet fed unrestricted,

2) calorie restricted standard diet, 3) ketogenic diet fed

unrestricted, or 4) calorie restricted ketogenic diet. The

mice fed a standard unrestricted diet and a ketogenic

diet had rapid tumor growth after 13 days, and a GKI of

15.2 and 11.4, respectively. The group fed a calorie re-

stricted standard diet had a significant decrease in tumor

volume after 13 days, along with a GKI of 3.7. The group

fed a calorie restricted ketogenic diet also had a signifi-

cant decrease in tumor volume, along with a GKI of 4.4.

The fourth study evaluated the effects of diets on an

orthotopically implanted CT-2A syngeneic mouse astro-

cytoma in C57BL/6 J mice and an orthotopically im-

planted human U87-MG human xenograft glioma in

BALBc/6-severe combined immunodeficiency (SCID)

mice [30]. Tumors were implanted and grown in the mice

for three days prior to diet initiation. After three days,

mice were maintained on one of three diets for 8 days: 1)

standard diet fed unrestricted, 2) ketogenic diet fed unre-

stricted, or 3) calorie restricted ketogenic diet. Tumor

weights at the end of 8 days were reduced only in the mice

that were fed a calorie restricted diet and experienced a

significant decrease in GKI. Groups of mice that did not

have a reduction in tumor weight had GKI’s that ranged

from 9.6 – 70.0. The groups of mice that had a reduction

in tumor weight had GKI’s that ranged from 1.8 – 4.4.

The fifth study evaluated the effects of diet and radi-

ation on mouse GL261 glioma implanted intracranially

in albino C57BL/6 J mice [31]. The mice were implanted

with tumors, and three days later they were placed on ei-

ther a standard diet fed unrestricted or a ketogenic diet

fed unrestricted. Mice were also assigned to groups that

either received or did not receive concomitant radiation

therapy. Without radiation, mice that were fed a keto-

genic diet had a GKI of 6.4 and had a median survival of

28 days, compared to a GKI of 50.0 and median survival

of 23 days for the standard diet group. With radiation,

mice that were fed a ketogenic diet had a GKI of 5.7 and

a median survival of 200+ days, compared to a GKI of

Figure 2 The Glucose Ketone Index Calculator tracking an individual’s GKI. The individual glucose and ketone values are displayed, along

with the corresponding GKI values. The GKI values are plotted over the course of a month (black line), whereas the GKI target value (1.0) is

plotted as a red line. We consider GKI values approaching 1.0 as potentially most therapeutic.
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Table 1 Low Glucose Ketone Index values are related to improved prognoses in humans and mice with brain tumors

Subjects Tumor type Diet # of
subjects

Days on
diet

Glucose
(mM)

Ketonesf

(mM)
Glucose Ketone
Index

Prognosis

Human1 Anaplastic Astrocytoma KD-URa 1 0 5.5 0.2 27.5 No response to standard
chemotherapy

56 5.0 4.6 1.1 FDG uptake at tumor site was
decreased by 21.77%; tumor
margins were unchanged

Cerebellar Astrocytoma KD-UR 1 0 5.5 0.2 27.5 Tumor resected and initiated on
KD while under standard
chemotherapy,after tumor was
radiologically stable by CT

56 4.0 5.5 0.7 FDG uptake at tumor site was
decreased by 21.84%

Notes: Both patients remained in
remission after return to standard
diet for 5 years (Subject 1) and
4 years (Subject 2),at time of
publication

Human2 Glioblastoma KD-Rb 1 0 7.5 0.2g 37.5 Incomplete surgical resection of
tumor; received chemotherapy
and radiation therapy concurrent
with diet

21 3.5 2.5g 1.4

No evidence of tumor by MRI
after concurrent therapy

Notes: Patient stayed on low
calorie diet for an additional
5 months; tumor recurrence
3 months after low-calorie diet
suspension

Mouse3 Mouse CT-2A astrocytoma SD-URc 7 13 9.1 0.6 15.2 Tumor dry weight:55 ± 15mgh

Syngenic (C57BL/6 J) SD-Rd 6 13 5.2 1.4 3.7 Tumor dry weight:7 ± 7 mg

KD-UR 14 13 11.4 1.0 11.4 Tumor dry weight:70 ± 15 mg

KD-R 6 13 5.7 1.3 4.4 Tumor dry weight:14 ± 8 mg

Mouse4 Mouse CT-2A astrocytoma SD-UR 12-14 8 14.0 0.2 70.0 Tumor dry weight:95 ± 25mgh

Syngenic (C57BL/6 J) KD-UR 12-14 8 13.5 0.6 22.5 Tumor dry weight:90 ± 15 mg

KD-R 12-14 8 8.0 1.8 4.4 Tumor dry weight:35 ± 5 mg

Human U87-MG glioma SD-UR 12-14 8 11.5 0.5 23.0 Tumor dry weight:60 ± 10mgh

Xenograft (SCID) KD-UR 12-14 8 11.5 1.2 9.6 Tumor dry weight:60 ± 7 mg

KD-R 12-14 8 5.5 3.0 1.8 Tumor dry weight:37 ± 5 mg

Mouse5 Mouse GL261 glioma SD-UR 19 13 10.0 0.2 50.0 Median survival time:23 days

(C57BL/6-cBrd/cBrd/Cr) KD-UR 19 13 8.9 1.4 6.4 Median survival time:28 days

SD-UR + Rade 11 13 9.7 0.3 32.3 Median survival time:41 days

KD-UR + Rad 11 13 9.7 1.7 5.7 Median survival time:200 + days

1Nebeling et al., 1995 [27]
2Zuccoli et al., 2010 [28]
3Seyfried et al., 2003 [29]
4Zhou et al., 2007 [30]
5Abdelwahab et al., 2012 [31]
aKetogenic diet, unrestricted.
bKetogenic diet, restricted.
c Standard diet, unrestricted.
d Standard diet, restricted.
e Diet with radiation therapy.
f Blood/plasma beta-hydroxybutyrate measurement.
g Urinary ketones were measured.
h Mean ± 95% Confidence Interval.
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32.3 and median survival of 41 days for the standard diet

group.

In addition to these studies, Table 2 shows a clear as-

sociation of the GKI to the therapeutic action of calorie

restriction against distal invasion, proliferation, and

angiogenesis in the VM-M3 model of glioblastoma. The

data for the GKI in Table 2 was computed from those

mice that were measured for both glucose and ketones

in comparison with the other biomarkers as previously

described [32]. When viewed collectively, the results

from the published reports show a clear relationship be-

tween the GKI and efficacy of metabolic therapy using

either the KD or calorie restriction. Therapeutic efficacy

of the KD or calorie restriction is greater with lower

GKI values than with higher values. The results suggest

that GKI levels that approach 1.0 are therapeutic for

managing brain tumor growth. Further studies will be

needed to determine those GKI values that can most ac-

curately predict efficacy during metabolic therapy involv-

ing diet or procedures that lower glucose and elevate

ketone bodies.

Discussion

We present evidence showing that the GKI can predict

success for brain cancer management in humans and

mice using metabolic therapies that lower blood glucose

and elevate blood ketone levels. Besides ketogenic diets,

other dietary therapies, such as calorie restriction, low

carbohydrate diets, and therapeutic fasting, can also

lower blood glucose and elevate β-OHB levels and can

have anti-tumor effects [24,33-38]. The GKIC was devel-

oped to more reliably and simply predict therapeutic

management for brain cancer patients under these diet-

ary states than could measurements of either blood glu-

cose or ketones alone. The data presented in Tables 1

and 2 support this prediction. Although the GKI is sim-

ple in concept, it has not been used previously to gage

success of various metabolic therapies based on inverse

changes in glucose and ketone body metabolism.

As brain tumor cells are dependent on glucose for sur-

vival and cannot effectively use ketone bodies as an al-

ternative fuel, a zone of metabolic management can be

achieved under conditions of low glucose and elevated

ketones. Ketone bodies also prevent neurological symp-

toms associated with hypoglycemia, such as neuroglyco-

penia, which allows blood glucose levels to be lowered

even further [22,39]. Hence, ketone body metabolism

can protect normal brain cells under conditions that tar-

get tumor cells [40]. The zone of metabolic management

is considered the therapeutic state that places maximal

metabolic stress on tumor cells while protecting the

health and vitality of normal cells [41]. We have pre-

sented substantial data showing that the GKI is validated

in several studies in mice. We feel that prospective valid-

ation of the GKIC will be obtained from future studies

using ketogenic diet therapy in humans with brain can-

cer and possibly other cancers that cannot effectively

metabolize β-OHB for energy, and depend upon glucose

for survival.

The GKI can be useful in determining the success of

dietary therapies that shift glucose- and lactate-based

metabolism to ketone-based metabolism. As a shift to-

ward ketone-based metabolism underscores the utility of

many dietary therapies in treating metabolic diseases

[41,42], the GKI can be used in determining the thera-

peutic success of shifting metabolism in individual patients.

The GKI therefore can be used to study the effectiveness

of dietary therapy in clinical trials of patients under a range

of dietary conditions, with a composite primary endpoint

consisting of lowering the subjects’ GKI. This will allow in-

vestigators to parse the effects of successful dietary inter-

vention on disease outcome from unsuccessful dietary

intervention.

Recent clinical studies assessing the effects of dietary

therapy on brain cancer progression have not measured

both blood glucose and ketone bodies throughout the

study periods [43,44]. Future clinical studies that intend

to assess the effect of dietary therapy on brain tumor

progression should measure both blood glucose and ke-

tone, as these markers are necessary to connect dietary

therapy to therapeutic efficacy. Preclinical studies have

demonstrated a clear linkage between GKI and thera-

peutic efficacy. The GKI will be an important biomarker

to measure in future rigorously designed and powered

clinical studies in order to demonstrate if there is a link-

age between GKI and therapeutic efficacy, as the few

case reports in the literature suggest.

The zone of metabolic management is likely entered

with GKI values between 1 and 2 for humans. Optimal

management is predicted for values approaching 1.0,

and blood glucose and ketone values should be mea-

sured 2–3 hours postprandial, twice a day if possible.

This will allow individuals to connect their dietary intake

to changes in their GKI. As an example, Figure 2 uses

Table 2 Linking the Glucose Ketone Index (GKI) to the therapeutic action of calorie restriction against distal invasion,

proliferation, and angiogenesis in the VM-M3 model of glioblastoma

Treatment Glucose (mM) Ketone (mM) GKI Distal invasion (photons/sec) Proliferation (Ki67 %) Angiogenesis (vessels/hpf)

AL 11.2 ± 0.6 0.7 ± 0.09 15.3 ± 0.9 14 ± 1.8 48 ± 1.2 15 ± 1.1

CR 8.3 ± 0.8 1.32 ± 0.1 6.5 ± 0.9 6 ± 0.9 34 ± 1.5 7 ± 0.72

AL, ad libitum feeding and CR is 60% food reduction for 10 days. Values are Mean ± SEM. 3-7 mice were evaluated in each group; hpf, high power field.
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the GKIC to track the GKI values of an individual on a

ketogenic diet, with a target GKI of 1.0. When an indi-

vidual’s GKI falls below the line denoting the target

metabolic state, the zone of metabolic management is

achieved. Further studies will be needed to establish the

validity of the predicted zone of management.

It has not escaped our attention that the GKIC could

have utility not only for managing brain cancer and pos-

sibly other cancers dependent on glucose and aerobic

fermentation for survival, but also for managing other

diseases or conditions where the ratio of glucose to ke-

tone bodies could be therapeutic. Such diseases and con-

ditions include Alzheimer’s disease, Parkinson’s disease,

traumatic brain injury, chronic inflammatory disease,

and epilepsy [41]. For example, the ketogenic diet has

long been recognized as an effective therapeutic strategy

for managing refractory seizures in children [45,46].

Therapeutic success in managing generalized idiopathic

epilepsy in epileptic EL mice can also be seen when ap-

plying the GKI to the data presented on glucose and β-

OHB [47]. Healthy individuals can utilize the GKIC to

prevent diseases and disorder, and manage general well-

ness. Further studies will be needed to determine the

utility of the GKIC for predicting therapeutic success in

the metabolic management of disease.

Additional file

Additional file 1: Instructions for calculating the GKI using a blood

glucose and ketone monitor.
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