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D
ietary contributions to health and chronic conditions, such 
as obesity, metabolic syndrome, cancer and cardiovascular 
disease, are of universal importance. Obesity and associated 

mortality/morbidity have risen dramatically over the past decades1, 
with the gut microbiome implicated as one of several potentially 
causal human-environment interactions2,3. Surprisingly, the details 
of the microbiome’s role in obesity and cardiometabolic health have 
proven difficult to define reproducibly in large human populations4, 
probably due to the complexity of habitual diets, the difficulty of 
measuring them at scale and disentangling them from other lifestyle 
variables5,6and the personalized nature of the microbiome7.

To overcome these challenges, we launched the PREDICT 1 trial 
of diet–microbiome interactions in metabolic health8. PREDICT 1 
included >1,000 participants profiled pre- and post-standardized 
dietary challenges using intensive in-clinic biometric and blood 
measures, habitual dietary data collection, continuous glucose mon-
itoring and stool metagenomics. The study was inspired by previous 
large-scale diet–microbiome interaction profiles, which identified 
gut microbiome configurations and microbial taxa associated with 
postprandial glucose responses9,10, obesity-associated biometrics 
such as body mass index (BMI) and adiposity11–13 and blood lipids 
and inflammatory markers14,15.
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The gut microbiome is shaped by diet and influences host metabolism; however, these links are complex and can be unique to 
each individual. We performed deep metagenomic sequencing of 1,203 gut microbiomes from 1,098 individuals enrolled in the 
Personalised Responses to Dietary Composition Trial (PREDICT 1) study, whose detailed long-term diet information, as well 
as hundreds of fasting and same-meal postprandial cardiometabolic blood marker measurements were available. We found 
many significant associations between microbes and specific nutrients, foods, food groups and general dietary indices, which 
were driven especially by the presence and diversity of healthy and plant-based foods. Microbial biomarkers of obesity were 
reproducible across external publicly available cohorts and in agreement with circulating blood metabolites that are indicators 
of cardiovascular disease risk. While some microbes, such as Prevotella copri and Blastocystis spp., were indicators of favorable 
postprandial glucose metabolism, overall microbiome composition was predictive for a large panel of cardiometabolic blood 
markers including fasting and postprandial glycemic, lipemic and inflammatory indices. The panel of intestinal species associ-
ated with healthy dietary habits overlapped with those associated with favorable cardiometabolic and postprandial markers, 
indicating that our large-scale resource can potentially stratify the gut microbiome into generalizable health levels in individu-
als without clinically manifest disease.
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Results
Large metagenomically profiled cohorts with rich clinical, car-
diometabolic and dietary information. PREDICT 1 (refs. 8,16) is an 
intervention study of diet–microbiome–cardiometabolic interac-
tions (Methods), including a discovery cohort in the UK (n = 1,002) 
and a validation population in the USA (n = 100). We collected 
demographic information, habitual diet data, cardiometabolic 
blood biomarkers and postprandial responses to standardized test 
meals in the clinic and in free-living settings8,16 (Fig. 1a). At-home 
stool collection yielded 1,098 baseline and 105 follow-up microbi-
ome samples (+14 d), which were all shotgun sequenced and then 
taxonomically and functionally profiled (Fig. 1a and Methods).

Microbial diversity and composition are linked with diet and 
fasting and postprandial biomarkers. We first leveraged a unique 
subpopulation of 480 monozygotic and dizygotic twins and con-
firmed that host genetics influences microbiome composition only 
to a limited extent17. Indeed, twin pair microbiome similarity was 
substantially lower than intrasubject longitudinal similarity (day 0 
versus day 14, P < 1 × 10 −12; Extended Data Fig. 1b), a testament to 
the personalized nature of the gut microbiome attributable to non-
genetic factors (Extended Data Fig. 1c,d).

We then investigated overall intrasample (alpha) microbiome 
diversity as a broad summary statistic of microbiome structure and 
found that it was significantly associated (q < 0.05) in 56 of the 295 
tested correlations with personal characteristics, habitual diet and 
metabolic indices (Fig. 1b and Supplementary Table 1a). BMI, vis-
ceral fat measurements and probability of fatty liver (using a validated 
prediction model18) were inversely associated with species richness. 
Among clinical circulating measures, high-density lipoprotein cho-
lesterol (HDLC) was positively correlated with species richness.  

Emerging cardiometabolic biomarkers19 that are not routinely 
used clinically, including lipoprotein particle size (diameter, ‘-D’)  
and glycoprotein acetyl (GlycA) (inflammatory biomarker), were 
also associated (positively or negatively) with microbiome rich-
ness. These results associating simple indicators such as micro-
biome richness to cardiometabolic health indicators and diet, 
motivated our more detailed investigations of specific gut microbi-
ome components.

Diversity of healthy plant-based foods in habitual diet shapes gut 
microbiome composition. We assessed the links between habitual 
diet and the microbiome using random forest models, each trained 
on quantitative microbiome features to predict each dietary variable 
from food frequency questionnaires (FFQs) (Methods). The perfor-
mance of the models was quantified with receiver operating char-
acteristic (ROC) area under the curve (AUC) for classification and 
correlation for regression (Methods). Several foods and food groups 
exceeded the 0.15 median Spearman correlation over bootstrap 
folds (denoted as ρ) between predicted and FFQ-estimated values 
(14.5%) and AUC > 0.65 (10.8%; Fig. 2a). The strongest associa-
tion was for coffee (instant or ground) (ρ = 0.43, AUC = 0.8), with 
dose-dependent effects and validated in the US cohort (Fig. 2d). 
Tighter microbiome links were found for energy-adjusted nutrients 
(Fig. 2a), with almost one-third (Supplementary Table 2) showing 
correlations above 0.3.

We then summarized constituent foods into dietary indices 
(Supplementary Table 2), including the Healthy Food Diversity 
(HFD) index (incorporating dietary diversity and food quality)20, 
the Healthy (hPDI)/Unhealthy Plant-based Dietary Indices (uPDI) 
(considering quality and quantity of plant-based foods), Healthy 
Eating Index (HEI) (extent of alignment with dietary guidelines)21 
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Fig. 1 | The PREDiCT 1 study associates gut microbiome structure with habitual diet and blood cardiometabolic markers. a, The PREDICT 1 study assessed 

the gut microbiome of 1,098 volunteers from the UK and USA via metagenomic sequencing of stool samples. Phenotypic data obtained through in-person 

assessment, blood/biospecimen collection and the return of validated study questionnaires queried a range of relevant host/environmental factors 

including: (1) personal characteristics, such as age, BMI and estimated visceral fat; (2) habitual dietary intake using semiquantitative FFQs; (3) fasting; and 

(4) postprandial cardiometabolic blood and inflammatory markers, total lipid and lipoprotein concentrations, lipoprotein particle sizes, apolipoproteins, 

derived metabolic risk scores, glycemic-mediated metabolites and metabolites related to fatty acid metabolism. b, Overall microbiome alpha diversity, 

estimated as the total number of confidently identified microbial species in a given sample (richness), was correlated with HDLD (positive) and estimated 

hepatic steatosis (negative). The five strongest positive and negative Spearman correlations with q < 0.05 are reported for each of the four categories. The 

top species based on Shannon diversity are reported in Extended Data Fig. 1a; all correlations, P and q values are reported in Supplementary Table 1. The ‘%E’ 

label represents foods and nutrients normalized by the estimated daily energy intake in kcal.
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and the alternate Mediterranean diet (aMED) score22, all of which 
are associated with reduced risk of chronic disease22–27. We demon-
strated tight correlations between microbial composition and the 
HFD, hPDI/uPDI and HEI in the UK (ρ between 0.31 and 0.37;  
Fig. 2a); the results were consistent in the US validation cohort, with 
ρ reaching 0.42 for HFD and 0.31 for aMED (Fig. 2e,f and Extended 
Data Fig. 3), highlighting the relationship between the microbiome 
and health-associated dietary patterns.

Microbial species segregate into groups associated with more and 
less healthy plant- and animal- based foods. We proceeded to iden-
tify the specific microbial taxa most responsible for these diet-based 
community associations (Fig. 2b). After adjusting for age and BMI, 
we found 42 species (24% of those at >20% prevalence) significantly 
correlated with at least 5 dietary exposures (q < 0.2; Supplementary 
Table 5). This included expected associations (Extended Data  
Fig. 2), such as enrichment of the probiotic taxa Bifidobacterium ani-
malis28 and Streptococcus thermophilus with greater full-fat yogurt 
consumption (ρ = 0.22 for both). The strongest food-microbe asso-
ciation was between the recently characterized butyrate-producing 
Lawsonibacter asaccharolyticus29 and coffee consumption (Fig. 2b). 
However, due to the low resolution of FFQ data, the complexity of 
dietary patterns, nutrient–nutrient interactions and clustering of 
healthy/less healthy food items, it is challenging to disentangle the 
independent associations of single foods with microbial species.

At a broader level, we found clear segregation of species  
(Fig. 2b) into two distinct clusters with either more healthy 
plant-based foods (for example, spinach, seeds, tomatoes, broccoli) 
or less healthy plant-based (for example, juices, sweetened bever-
ages, refined grains) and animal-based foods, as defined by the 
PDI30 (Supplementary Table 4). Taxa linked to healthy plant-based 
foods (Fig. 2b,c and Extended Data Fig. 2) mostly included butyr-
ate producers, such as Roseburia hominis, Agathobaculum butyrici-
producens, Faecalibacterium prausnitzii and Anaerostipes hadrus, 
as well as uncultivated species, predicted to have this metabolic 
capability (Roseburia bacterium CAG:182 and Firmicutes bacterium 
CAG:95). Clades correlating with several less healthy plant-based 
and animal-based foods included several Clostridium species 
(Clostridium innocuum, Clostridium symbiosum, Clostridium 
spiroforme, Clostridium leptum, Clostridium saccharolyticum). 
The segregation of species according to animal-based healthy 
foods (for example, eggs, white and oily fish) or animal-based 
less healthy foods (for example, meat pies, bacon, dairy des-
serts) using a new categorization (Methods), was also distinct 
and overlapping with taxa signatures for healthy and less healthy 
plant foods (Fig. 2c and Extended Data Fig. 2). The few foods not  

fitting into the healthy cluster despite being classified as healthy plant 
foods, were (ultra)-processed foods31 (for example, sauces, baked 
beans; Extended Data Fig. 2). This emphasizes the importance of  
food quality (for example, highly processed versus unprocessed), 
food source (for example, plant versus animal) and food type  
(that is, not all plant foods are healthy) both in overall health and 
microbiome ecology.

The strongest microbiome habitual diet associations are driven 
by poorly characterized microbes. Many of the strongest microbial 
associations with diet occurred with only recently isolated or still 
uncultured taxa including five species defined using coabundance 
gene groups (CAGs) from metagenomics32. Among indices, the 
hPDI significantly correlated with 60 of the 176 prevalent species, 
highlighting together with the HFD (Fig. 2e) the impact of dietary 
diversity and quality on gut microbial responsiveness. Among 
other dietary indices and nutrients, we observed general concor-
dance with the two sets of microbes associated with healthy and 
less healthy foods. A greater animal-based food score (definition 
in Supplementary Table 4) was associated with the healthy cluster 
(Fig. 2c and Extended Data Fig. 2), suggesting that a diet rich in 
healthier animal-based foods is associated with the more favor-
able diet–microbiome signature, although this may also reflect an 
overall healthier dietary pattern. The healthy and unhealthy PDIs, 
which differentially affect disease risk25,30, also had distinct clusters, 
again emphasizing the oversimplification of conventional plant and 
animal-based food groupings. The taxa with the highest correlations 
in the two clusters are Firmicutes bacterium CAG:95 and C. leptum 
for healthy and unhealthy diet, respectively. The lack or paucity of 
cultivated representatives for these two taxa may explain why these 
links were previously overlooked9,12. The US validation cohort gen-
erally confirmed these associations despite its smaller sample size: 
among the subset of derived pattern/index scores shared between 
the UK and US cohorts, of the 54 associations that were significant 
both in the UK cohort (false discovery rate (FDR) q < 0.2) and in the 
US cohort (P < 0.05), 70.4% were concordant.

Microbial indicators of obesity are reproducible across varied 
populations. Microbiome links to obesity have attracted much 
interest, although results have varied in human populations3,4. Our 
machine learning approach (Methods) found visceral fat to be more 
strongly linked to gut microbial composition than BMI33, a finding 
again validated in US participants (Fig. 3a). Some obesity-associated 
taxa were also indicators of poor dietary patterns after control-
ling for BMI (for example, Clostridium CAG:58, Flavonifractor 
plautii), whereas markers of lower visceral fat mass (for example,  

Fig. 2 | Food quality, regardless of source, is linked to overall and feature-level composition of the gut microbiome. a, Specific components of habitual 

diet comprising foods, nutrients and dietary indices are linked to the composition of the gut microbiome with variable strengths as estimated by machine 

learning regression and classification models. Box plots report the correlation between the real value of each component and the value predicted by 

regression models across 100 training/testing folds (Methods). The circles denote the median AUC values across 100 folds for a corresponding binary 

classifier between the highest and lowest quartiles (Methods). NSP, non‐starch polysaccharide. b, Single Spearman correlations adjusted for BMI and age 

between microbial species and components of habitual diet with the asterisks denoting significant associations (FDR q < 0.2). The 30 microbial species 

with the highest number of significant associations across habitual diet categories are reported. All indices of dietary patterns are reported, whereas 

only food groups and nutrients (energy-adjusted) with at least 7 associations among the top 30 microbial species are reported. Rows and columns are 

hierarchically clustered (complete linkage, Euclidean distance). Full heatmaps of foods and unadjusted nutrients are reported in Extended Data Fig. 2; 

the full set of correlations, P and q values are available in Supplementary Tables 5 and 6 for UK and US, respectively. c, Number of significant positive and 

negative associations (Spearman correlation, P < 0.2) between foods and taxa categorized by more and less healthy plant-based foods and more and less 

healthy animal-based foods according to the PDI. The taxa shown are the 20 species with the highest total number of significant associations regardless of 

category. d, The association between the gut microbiome and coffee consumption in UK participants is dose-dependent, that is, stronger when assessing 

heavy (for example, >4 cups per day) versus never drinkers, and was validated in the US cohort when applying the UK model. The reported ROC curves 

represent the performance of the classifier at varying classification thresholds with regard to the true positive (that is, recall) and false positive rates 

(that is, precision). e,f, Among general dietary patterns and indices, the HFD (e) and aMED (f) were validated in the US cohort, thus showing consistency 

between the two populations on these two important dietary indices. Other validations of the UK model applied to the US cohort are reported in  

Extended Data Fig. 3. The box plots show the first and third quartiles (boxes) and the median (middle line); the whiskers extend up to 1.5× the IQR.
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F. prausnitzii) were more strongly linked to healthier foods and pat-
terns of intake, illustrating that diet and obesity microbiome signa-
tures overlap but are not identical (Fig. 3b).

Of the 17 species surpassing q < 0.05, 3 had an (absolute) ρ > 0.1 
in the US cohort and 2 of these were concordant with those in the 
UK cohort (Fig. 3c). Across harmonized independent datasets, all 
but two median associations were consistent with the PREDICT 

1 UK signatures and 12 of the 14 were concordant despite differ-
ent sample collection and DNA extraction methods. Microbiome 
models to predict BMI in the UK cohort were further validated in 
six independent datasets available in curatedMetagenomicData34 
(Methods). Despite interpopulation differences11,35, the UK model 
improved cohort-specific cross-validation accuracy in most cases, 
on par with the leave-one-dataset-out (LODO) approach (Fig. 3d).
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Fasting cardiometabolic markers associated with specific micro-
biome structures. To explore the connections between the gut 
microbiome and cardiometabolic health, we developed and evalu-
ated microbiome-based machine learning models for each selected 
clinical and emerging cardiometabolic biomarker. We found modest 
concordance between microbiome models and several traditional 
clinical fasting cardiometabolic biomarkers (Fig. 4a) including 
blood pressure, lipids (triglycerides (TGs), total cholesterol, HDLC, 
low-density lipoprotein cholesterol (LDLC)), fasting glucose and 
glycosylated hemoglobin (percentage HbA1c) as well as a clinical 
prediction score estimating the latent 10-year risk of heart disease 
(atherosclerotic cardiovascular disease score)36.

For other blood biomarkers (Fig. 1a), we found stronger cor-
relations between the microbiome and an inflammatory surrogate 
(GlycA; Fig. 4a), circulating polyunsaturated fatty acids (PUFAs) 
(both omega-6 (fatty aid ⍵6/fatty acid) and total PUFA (PUFA/
FA) to total fatty acid ratios, ρ = 0.3 and 0.32, respectively), as well 
as emerging lipid measures linked to host health, including HDL 
and very-low-density lipoprotein (VLDL) particle size (-D, ρ = 0.29 
for both) and the lipid content of lipoprotein subfractions (includ-
ing total lipids in very large HDL and total lipids in large HDL, 
ρ = 0.3 and 0.28, respectively). GlycA and VLDLD are associated 
with increased risk for metabolic syndrome, CVD and type 2 dia-
betes, whereas HDLD and its lipid constituents, omega-6 and total 
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Fig. 3 | Random forest machine learning models trained on microbial or functional profiles can predict obesity phenotypic markers, even on independent 

cohorts. a, Whole-microbiome machine learning models can assess personal factors with random forest regression (box plots and left-side y axis) using 

only taxonomic or functional (that is, pathway) microbiome features. Classification models (circles and right-side y axis) exceeded an AUC of 0.65 

except for waist-to-hip ratio and smoking. b, We observed the highest correlations between the relative abundance of microbial species and age, BMI and 

visceral fat. The link between microbial features and visceral fat was of greater effect and more often significant than with traditional BMI. c, Using several 

independent datasets34, we confirmed the correlations between single microbial species and BMI, with the blue points denoting significant associations at 

P < 0.05. The statistical test used was a two-sided z-test (Methods). d, The machine learning model for BMI trained on PREDICT 1 data was reproducible in 

several external datasets (Extended Data Fig. 5), achieving correlations with true values exceeding those obtained in the cross-validation of a single given 

dataset in five of seven cases. When the PREDICT 1 microbiome model was expanded to include other datasets (excluding those used for testing, that is, 

LODO approach), performance remained comparable, confirming the generalizability of the PREDICT 1 model on obesity-related indicators. The box plots 

show the first and third quartiles (boxes) and the median (middle line); the whiskers extend up to 1.5× the IQR.
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PUFA, have inverse associations37,38. Similarly, most glycemic indi-
cators such as insulin and C-peptide were also coupled to human 
gut microbiome composition (ρ = 0.17 and 0.22, respectively) 
as well as derived predictors of insulin sensitivity (quantitative 
insulin-sensitivity check index (QUICKI), ρ = 0.22)39 and hepatic 
steatosis (liver fat probability, ρ = 0.2).

Species-based predictors proved more accurate than pathway 
abundance profiles (Extended Data Fig. 4a), which is consistent 
with other reports40. Our primary findings were generally replicated 
in the US cohort (Fig. 4a), corroborating the existence of a strong, 
previously overlooked link between the gut microbiome and sur-
rogates of cardiometabolic health.

The gut microbiome is a better predictor of postprandial TGs 
and insulin concentrations than of glucose levels. Fasting blood 
assays are standard for research and clinical investigations; however, 
individuals consume multiple mixed-nutrient meals throughout 
the day and spend most of their waking hours in the postprandial 
state, resulting in repeated elevations in circulating TG, glucose and 
related metabolites8. While postprandial glucose responses may, in 
part, be predicted by the gut microbiome9, real-life variations in 
both postprandial lipid and glucose-mediated metabolites have not 
been explored. We assessed them by considering the overall magni-
tude of the response by incremental AUC (iAUC), peak concentra-
tions and change from fasting (that is, rise).

First, we measured postprandial TG, glucose, C-peptide, insu-
lin and circulating metabolite concentrations at regular intervals 
(0–6 h) in the clinic after 2 sequential test meals (890 kcal, 50 g fat 
and 85 g carbohydrates at 0 h (breakfast) and 500 kcal, 22 g fat and 
71 g carbohydrates at 4 h (lunch); Fig. 4b,c). Notably, we found that 
postprandial TG (0–6 h iAUC), insulin and C-peptide (both 0–2 h 
iAUC) responses were more strongly associated with the gut micro-
biome (ρ = 0.15, 0.2, 0.24, respectively; AUC > 0.65) compared 
with postprandial glucose (0–2 h iAUC) responses (ρ = 0.13 and 
AUC = 0.6; Fig. 4b), findings that were replicated in our US cohort 
(Fig. 4b–g). We also measured glucose concentrations during the 
13-d at-home period16 after isocaloric standardized meals with 
different macronutrient compositions (Supplementary Table 3). 
However, contrary to our clinic meal responses (Fig. 4b) and previ-
ous work9, the glucose 0–2 h iAUCs after these meals did not achieve 
high correlations with the microbiome (all ρ < 0.07 and AUC < 0.59; 
Fig. 4c). While this may be dependent on meal composition and 
the effect of multiple meals consumed after stool collection, these 
results suggest that the microbiome is a stronger predictor of post-
prandial lipemia than glycemia.

Postprandial rises in lipid- and glucose-mediated measures are 
differentially predicted by the microbiome compared with fasting 
levels. Postprandial measures depend both on the corresponding  

fasting levels and meal-induced rise. Therefore, we compared the 
differential prediction accuracy of the gut microbiome for fast-
ing levels, postprandial (peak) total levels and postprandial rises  
(Fig. 4h). For lipid- and glucose-mediated (clinic day) measures, 
despite a similar strength of association between peak (6 h), mag-
nitude (iAUC) and fasting TG concentrations, the rise (6–0 h) was 
not similarly correlated (Fig. 4a–e,f). In contrast, the microbiome 
associations with glycemic measures were comparable between fast-
ing, peak and rise (Fig. 4a–d).

Of particular interest were lipoprotein subfraction concentra-
tions, composition and size (Extended Data Fig. 4b,c), which are 
remodeled postprandially into potentially atherogenic lipoproteins 
(for example, large VLDL particles, TG-enriched LDL and HDL 
particles)41. These particles were predicted at comparable accu-
racy for both fasting and postprandial peak 6-h concentrations  
(Fig. 4a–e,f–h); notably, HDLD and VLDLD achieved modestly 
stronger correlations (ρ = 0.32 for both) postprandially (Fig. 4f). 
However, as with TG, we found that the microbiome was substan-
tially less predictive for the postprandial rise in all lipid metabolite 
measures compared with fasting and postprandial peak concentra-
tion (Fig. 4a–e,f–h). For example, HDLD is closely associated with 
gut microbial composition at fasting and 6 h postprandially (ρ = 0.29 
and 0.32; AUC = 0.71 and 0.72, respectively; Fig. 4a–e,f–h), but not 
with the rise (Fig. 4f). These differential associations suggest that 
the microbiome may influence postprandial lipid-mediated mea-
sures via effects on fasting measures.

Distinct microbial signatures discriminate between positive 
and negative metabolic health indices under fasting conditions. 
Motivated by the observed potential of the gut microbiome to pre-
dict the fasting and postprandial levels of circulating metabolic 
markers, we next assessed the microbiome features driving these 
associations. Among three general risk indices of cardiovascular 
health (atherosclerotic cardiovascular disease, liver fat probability 
and insulin sensitivity or QUICKI; Fig. 4a), we found six species sig-
nificantly and concordantly correlated with all three (negatively or 
positively, P < 0.05), hinting at a global underlying microbial signa-
ture of improved metabolic health. These taxa included Clostridium 
CAG:58 (higher cardiometabolic risk) and Haemophilus parainflu-
enzae (lower risk) that we had previously linked with healthy and 
less healthy dietary patterns (Fig. 2b).

We found similarly distinct separations between two opposing, 
clearly defined clusters of species either positively or negatively 
correlated with fasting cardiometabolic measures (Fig. 5a,b). 
Species correlated with positive markers included some preva-
lent taxa generally regarded as healthy (F. prausnitzii) but also 
eight uncultivated and undercharacterized bacteria. The positive 
cluster included many distinct genera, pointing at a rich func-
tional diversity. In contrast, the cluster negatively correlated with  

Fig. 4 | Fasting and postprandial cardiometabolic responses to standardized test meals associated with the microbiome. a, The strongest observed 

links according to the correlation of predicted versus collected measures between the gut microbiome and fasting metabolic blood markers. For measures 

of lipid concentration in lipoproteins, we report the five strongest correlations only. Indices are grouped in nine distinct categories and the box plots 

report the correlation between the prediction of random forest regression models trained on microbial taxa or pathway abundances across 100 training/

testing folds; the stars report the regressor performance when trained on the UK cohort and evaluated on the independent US validation cohort (left-side 

y axis). The circles denote the AUC values for the random forest classification (right-side y axis). b–f, Performance of our microbiome-based machine 

learning model in estimating postprandial absolute levels and postprandial increases in cardiometabolic markers. The stars denote the regression model 

results in our US validation cohort for postprandial measurements (not rises; Extended Data Fig. 4b,c). b, Random forest regression and classification 

performance in predicting postprandial metabolic responses for clinic meal 1 (breakfast) measured as iAUC at 6 h for TGs and iAUC at 2 h for glucose, 

C-peptide and insulin. c, Glycemic-mediated postprandial iAUCs at 2 h for the other meals (Supplementary Table 7). d, Glycemic-mediated markers of 

absolute levels versus rise. e, Postprandial inflammatory measures (concentration and rise). f, Postprandial lipoprotein measures (6 h concentration and 

rise). g, Overall agreement between random forest regression and classification tasks for the UK models applied to the independent US cohort. h, Random 

forest microbiome-based model performance with postprandial changes (concentrations and rise) in lipoprotein concentration, composition and size. 

Fasting and postprandial performance indices (correlation of the regressors’ outputs) were more tightly linked to gut community structure than were their 

corresponding postprandial rises. The box plots show the first and third quartiles (boxes) and median (middle line); the whiskers extend up to 1.5× the IQR.
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positive markers included eight Clostridium species and the recur-
rent negatively connotated Ruminococcus gnavus and F. plautii. 
Large HDL particles (and their lipid compositions; Extended Data 
Figs. 6 and 7), which have strong inverse associations with car-
diometabolic outcomes38, were associated with the healthy cluster. 
Conversely, lipoproteins associated with an increased risk of CVD 
and type 2 diabetes (VLDL of all sizes and lipid composition)  
and atherogenicity42 (small LDL, medium HDL and small HDL 
TG), were associated with the less healthy cluster (Extended Data 
Figs. 6 and 7).

Circulating omega-6 and total PUFA were associated with the 
healthy cluster (Fig. 5a and Supplementary Table 5). Due to the lack 
of endogenous production of PUFA, circulating levels closely reflect 
dietary intake43 and are linked to a reduced risk of chronic disease38. 
In contrast, circulating monounsaturated fatty acids (MUFAs), 
which do not closely reflect dietary intake and unlike dietary 
MUFA have been linked to increased risk of chronic disease38, were 
associated with the unhealthy cluster, with an undercharacterized 
Firmicutes species (CAG:170) and Clostridium bolteae responsible 
for the strongest negative and positive associations, respectively.
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Both favorable and unfavorable microbial signatures of meta-
bolic health are maintained under postprandial conditions. 
Links between postprandial levels of cardiometabolic and inflam-
matory measures corresponded with the segregation of healthful 

versus detrimental taxa observed under fasting conditions (Fig. 5b,c 
and Extended Data Figs. 6 and 7). Notably, fasting and postpran-
dial GlycA were strongly linked with the microbiome (47 species  
significantly correlated at 6 h and 64 at fasting), substantially  
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exceeding interleukin-6 levels (5 and 16 significant associations;  
Fig. 5b,c). C. boltae and R. gnavus correlated the most with increased 
fasting and postprandial inflammation, whereas H. parainfluenzae 
and Firmicutes bacterium CAG:95 were the strongest associations 
with reduced GlycA levels. VLDL lipoprotein subfractions (markers 
of adverse cardiometabolic effects) were also consistently associated 
with the less healthy cluster both at fasting and postprandially.

Postprandial rises, rather than absolute postprandial levels, were 
in some cases uncoupled from the microbial associations with 
fasting markers (Fig. 5d). For example, change in GlycA (Fig. 5b) 
was differentially associated with clusters compared to fasting and 
postprandial levels (especially for F. plautii, Firmicutes bacterium 
CAG:95 and Firmicutes bacterium CAG:110), probably due to the 
small reduction in GlycA postprandially. Other immunological 
markers and some lipid and cholesterol levels paralleled this behav-
ior (Extended Data Fig. 6), possibly reflecting postprandial lipopro-
tein remodeling44.

We observed the same favorable versus unfavorable clustering 
of microbiome features when analyzing microbial pathways and 
gene families (Extended Data Fig. 8) supporting taxa segregation by 
their underlying biochemical activities. The strengths of microbe–
blood marker associations were confirmed by random forest fea-
ture relevance analysis (Extended Data Fig. 9); importantly, they 
were confirmed in the US cohort. For the 209 microbe–index 
correlations that were significant both in the UK (q < 0.2) and US 
cohorts (P < 0.05), the concordance in the sign of the correlation 
reached 88.7% for the associations in fasting conditions and 96.1% 
postprandially.

P. copri diversity and Blastocystis presence are markers of 
improved postprandial glucose responses. Some ecologically 
unusual microbes hypothesized to have population-scale health 
effects solely based on their presence or absence appeared in our 
microbial signatures45. Among them, P. copri45,46 had conflicting 
previous accounts for its role in glucose homeostasis47,48 possibly 
due to subspecies diversity49,50. Our data found P. copri to be asso-
ciated with beneficial cardiometabolic markers, being negatively 
correlated with estimated visceral fat (ρ = −0.11, P = 0.0006), fast-
ing VLDL-D (ρ = −0.08, P = 0.011) and fasting GlycA (ρ = −0.14, 
P < 0.0001) among others (Supplementary Table 5). While almost 
no diet indices were associated with P. copri, postprandial rises 
in glucose (ρ = −0.11, P < 0.001) and polyunsaturated/omega-6 
fatty acids (ρ =0.15 and 0.14, respectively, and P < 0.001) were 
top-scoring correlations for this bacterium and were stronger than 
corresponding fasting and postprandial levels in contrast with what 
we observed for the overall microbiome (Fig. 4a,b). P. copri was 
present in at least one of its subtypes49 in 29.8% of the PREDICT 
1 individuals and P. copri carriers had lower C-peptide (−9.2%, 
P = 0.002), insulin (−14%, P = 0.006) and TG levels (−3.2%, 
P = 0.003) compared to P. copri-negative individuals (Extended Data 
Fig. 10 and Supplementary Table 8). Similarly, postprandial glucose 
after breakfast was significantly less pronounced in individuals with  
P. copri (−20.4% glucose iAUC at 2 h, P = 0.002; Extended Data  
Fig. 10c) and visceral fat was significantly lower (−12.5%, P = 0.005; 
Extended Data Fig. 10a). This set of diverse associations supports 
that the presence of P. copri in the gut microbiome could be benefi-
cial in glucose homeostasis and host metabolism.

Blastocystis is a unicellular eukaryotic parasite increasingly 
regarded as a commensal member of the gut microbiome51–53.  
It shares with P. copri a limited prevalence in Western-lifestyle 
populations53 and a high abundance when present. We found evi-
dence that Blastocystis-positive individuals (25.7% in our cohort) 
also had favorable glucose homeostasis and lower estimated visceral 
fat (−15.7% glucose iAUC, −22.1% visceral fat, P < 0.002; Extended 
Data Fig. 10). The latter confirms that Blastocystis is less prevalent in 
individuals with high BMI, as suggested previously53. Interestingly, 

the effect of the simultaneous presence of P. copri and Blastocystis 
(12% of individuals) appeared to further promote healthier 
metabolic function. Visceral fat was 17.3% lower on average 
(P < 0.005; Supplementary Table 8) for individuals positive for both  
P. copri and Blastocystis compared to individuals with only one or 
the other and 23.3% lower (P = 8.9 × 10−6) compared with individu-
als lacking both.

A clear microbial signature of cardiometabolic health levels 
consistent across diet, obesity indicators and cardiometabolic 
risks. We observed above a consistent set of microbial species  
that were strongly linked to (1) food indices reflecting different lev-
els of healthy diets, (2) indicators of obesity and cardiometabolic 
health, (3) fasting circulating metabolites connected with cardio-
metabolic risk and (4) postprandial responses. To test the consis-
tency of such a signature, we selected representative cardiometabolic 
health indicators from each category and ranked microbial spe-
cies based on their correlation coefficient. We found remarkable  
agreement among microbes associated with different posi-
tive or negative indicators of cardiometabolic health (Fig. 6 and 
Supplementary Table 9).

In particular, Firmicutes bacterium CAG:95 was the uncultivated 
species with the most beneficial score. Of the health-associated 
microbial species, only F. prausnitzii and, partially, P. copri were 
already convincingly linked with health in previous investigations54. 
The beneficial signature also included Eubacterium eligens and  
H. parainfluenzae, without previous clear roles in health, and addi-
tional species without cultivated representatives such as Roseburia 
bacterium CAG:182, Oscillibacter sp. 57_20, Firmicutes bacterium 
CAG:170, Oscillibacter sp. PC13 and Clostridium sp. CAG:167. 
Species conversely consistent with indicators of poor overall health 
(Fig. 6) included the already discussed set of Clostridia (C. spiro-
forme, C. bolteae CAG:59, C. bolteae, Clostridium sp. CAG:58,  
C. symbiosum, C. innocuum and C. leptum) and the mucolytic 
microbes R. gnavus and F. plautii, again previously found to be 
associated with disease55,56. Overall, this set of 30 species serves as a 
marker of overall good or poor cardiometabolic health and dietary 
patterns in nondiseased human hosts.

Discussion
PREDICT 1 represents the first diet–microbiome study to iden-
tify both individual components of the microbiome and an over-
all gut microbial signature associated with multiple measures of 
dietary intake and cardiometabolic health. These signatures were 
reproduced across UK and US populations, across multiple pre-
viously published study populations and for multiple dietary 
and health indicators. Notably, microbiome signatures grouped 
both microbiome and dietary components into health-associated 
and anti-associated clusters, the latter in agreement with dietary  
quality and diversity scores20,57. The diversity and quality of a 
healthy diet (HFD and PDI) was particularly predictable by the 
microbiome, surpassing other indices including the Mediterranean 
diet previously linked with microbiome composition58. The segre-
gation of favorable and unfavorable microbial clusters according to 
the heterogeneity of the food source (healthy or unhealthy animal 
or plant), quality (processed versus unprocessed) and dietary pat-
terns highlights the importance of looking beyond nutrients and 
single foods in diet–microbiome research. The substantially greater 
detail and consistency in our results relative to previous diet–micro-
biome work9,11–13,15 may be due to the quality in dietary recording, 
metagenomic profiling and the large sample size. However, given 
the limitations of FFQ dietary data, future diet–microbiome studies  
would benefit further from higher resolution dietary assessment 
methodologies, such as weighed food record data.

Several aspects of the consistent gut microbiome signatures 
across diet, obesity and cardiometabolic health measures are  
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striking for their potential new epidemiology and microbial  
biochemistry. A surprising proportion of diet- or health-associated 
taxa in these results are largely uncharacterized or represented solely 
by metagenomic assemblies5. Other microbes found in this study 
to have dietary or cardiometabolic associations, such as Prevotella 
or Blastocystis spp., have been characterized in greater biochemi-
cal detail but their population structure in the human microbiome 
has only recently begun to be appreciated49,53. The latter in par-
ticular may be only one of many examples of nonbacterial micro-
biome members not amenable to most current high-throughput 
approaches but with unexpected and potentially key positive roles 
in humans.

Likewise, these new contributions of the gut microbiome to 
human dietary responses may help to explain some of the hetero-
geneity seen among previous population studies4,9,59. First, diet–
microbiome–blood marker associations were overall strongest 
with regard to circulating lipid levels relative to glycemic indices. 
It is possible that the relative contribution of gut microbes is higher 

for circulating lipid levels than carbohydrate derivatives, through 
either direct processes or indirectly through gastrointestinal or  
systemic bile acid signaling60. Alternatively, host metabolism may 
play a greater role in circulating glucose and insulin levels relative to 
microbial bioactivity. The lipoprotein features most closely associ-
ated with the microbiome (such as total lipids in large HDL) are also 
more strongly associated with cardiovascular risk compared with 
typically measured lipids (for example, total cholesterol, HDLC, 
LDLC), suggesting that their utility as clinical biomarkers or as tar-
gets for beneficial gut microbiome manipulation warrants further 
investigation.

Overall, this is the first study to identify a shared diet–metabolic 
health microbial signature, segregating favorable and unfavorable 
taxa with multiple measures of both dietary intake and cardiometa-
bolic health. As a resource, these results will aid both in the utili-
zation of the gut microbiome as a biomarker for cardiometabolic  
risk and in strategies for reshaping the microbiome to improve  
personalized dietary health.
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Methods
The PREDICT 1 study. The PREDICT 1 clinical trial (NCT03479866) aimed to 
quantify and predict individual variations in metabolic responses to standardized 
meals. We integrated data from a cohort of twins and unrelated adults from the 
UK to explore genetic, metabolic, microbiome composition, meal composition and 
meal context data to distinguish predictors of individual responses to meals. We 
then validated these predictions in an independent cohort of adults from the USA. 
The trial was a single-arm, single-blinded intervention study that commenced 
in June 2018 and was completed in May 2019. Ethical approval for the study was 
obtained in the UK from the Research Ethics Committee and Integrated Research 
Application System (IRAS 236407) and in the USA from the Institutional Review 
Board (Partners Healthcare IRB 2018P002078). The trial was run in accordance 
with the Declaration of Helsinki (2013) and good clinical practice. Study 
procedures were only carried out after having received written informed consent 
from each participant.

For the full protocol, see Berry et al.16. Briefly, 1,002 generally healthy adults 
from the UK (non-twins and identical (monozygotic) and nonidentical (dizygotic) 
twins) and 100 healthy adults from the USA (non-twins; validation cohort) were 
enrolled in the study (see Berry et al.8 for the eligibility criteria) and completed the 
baseline clinic measurements. The study consisted of a 1-d clinical visit at baseline 
followed by a 13-d at-home period. At baseline (day 1), participants arrived fasted 
and were given a standardized metabolic challenge meal for breakfast (0 h; 86 g 
carbohydrate, 53 g fat) and lunch (4 h; 71 g carbohydrate, 22 g fat). Fasting and 
postprandial (9 time points; 0–6 h) venous blood was collected to determine the 
serum concentrations of glucose, TG, insulin, C-peptide (as a surrogate for insulin) 
and metabolomics (nuclear magnetic resonance). Stool samples, anthropometry 
and a questionnaire querying habitual diet, lifestyle and medical health were 
obtained at baseline. During the home phase (days 2–14), participants consumed 
standardized test meals in duplicate varying in sequence and in macronutrient 
composition while wearing digital devices to continuously monitor their blood 
glucose (continuous glucose monitor; CGM), physical activity and sleep. 
Capillary blood was collected using dried blood spot cards during the clinic 
visit and at home to analyze fasting and postprandial concentrations of TG and 
C-peptide. Participants were supported throughout the study with reminders and 
communication from study staff delivered through the Zoe study app. A second 
stool sample was collected at home by participants after completion of the study; 
all devices and samples were mailed back to study staff. To monitor compliance, 
all test meals consumed by participants were logged in the Zoe app (with an 
accompanying picture) and reviewed in real time by the study nutritionists. Only 
test meals that were consumed according to the standardized meal protocol 
(outlined in Berry et al.8) were included in the analysis.

The recruitment criteria, meal intervention challenges, outcome variables and 
sample collection and analysis procedures relevant to this paper are described 
elsewhere8,16. The core characteristics of study participants at baseline were not 
significantly different between UK and US cohorts8.

Overview of microbiome sequencing and profiling. We performed deep  
shotgun metagenomic sequencing (mean 8.8 ± 2.2 gigabase pairs per sample)  
in stool samples from a total of 1,098 PREDICT 1 participants (UK, n = 1,001; 
USA, n = 97). From a random subset of these participants (n = 105), we additionally 
sequenced fecal metagenomes from a second stool sample collected 14 d after  
the first collection (Fig. 1a) for a total of 1,168 metagenomes. Computational 
analysis was performed using the bioBakery suite of tools61 to obtain species-level 
microbial abundances for the 769 taxa identified using the newly updated 
MetaPhlAn v.3.0 tool62, functional potential profiling of >1.91 M microbial  
gene families, 445 Kyoto Encyclopedia of Genes and Genomes pathways with 
HUMAnN v.2.063 and reconstruction of 48,181 metagenome-assembled genomes 
(MAGs) of medium or high quality using our validated pipeline5, which includes 
assembly with MEGAHIT64, binning with MetaBAT 265 and quality control  
with CheckM66.

Microbiome sample collection. Participants were mailed a pre-visit study pack 
with a stool collection kit and relevant questionnaires and asked to collect an 
at-home stool sample at two time points (one before their in-person clinical visit 
on day 0 and the next at the conclusion of their home phase on day 14). Those 
who did not collect a sample before their in-person, baseline visit completed the 
collection as soon as possible during the home phase. Baseline samples in the UK 
were collected using the EasySampler Stool Collection Kit (ALPCO), whereas 
post-study samples, as well as the entirety of the US collection, was conducted 
using the FECOTAINER stool sample kit (Excretas Medical BV). For baseline 
samples, one fresh unfixed sample was deposited into a sterile universal collection 
container (catalog no. L0263-10; Sarstedt Australia) and one into a tube containing 
DNA/RNA Shield buffer (catalog no. R1101; Zymo Research). Samples were 
stored at ambient temperature until returned to the study staff. Follow-up samples 
were collected similarly but only sampled into a DNA/RNA Shield buffer tube 
and sent by standard mail to study staff. On receipt in the laboratory, samples 
were homogenized, aliquoted and stored at −80 °C in QIAGEN PowerBeads 
1.5-ml tubes. This sample collection procedure was tested and validated internally 
comparing different storage conditions (fresh, frozen, buffer), different DNA 

extraction kits (PowerSoil Pro, FastDNA, Protocol Q, Zymo) and different 
sequencing technologies (16S ribosomal RNA, shotgun metagenomics and arrays) 
(data not shown).

DNA extraction and sequencing. DNA was isolated by QIAGEN Genomic 
Services using DNeasy 96 PowerSoil Pro from all day 0 (baseline) DNA/RNA 
Shield-fixed microbiome samples. A random subset of day 14 (end of at-home 
phase) samples (n = 105) were also extracted. Optical density measurement 
was done using spectrophotometer quantification (Tecan Infinite 200). Before 
library preparation and sequencing, the quality and quantity of the samples were 
assessed using the Fragment Analyzer system (Agilent Technologies) according to 
manufacturer’s guidelines. Samples with a high-quality DNA profile were further 
processed. The NEBNext Ultra II FS DNA Module (catalog no. E7810S/L; New 
England Biolabs) was used for DNA fragmentation, end repair and A-tailing. For 
adapter ligation, the NEBNext Ultra II Ligation Module (catalog no. E7595S/L; 
New England Biolabs) was used. The quality and yield after sample preparation 
were measured with the Fragment Analyzer system. The size of the resulting 
product was consistent with the expected size of approximately 500–700 bp. 
Libraries were sequenced for 300-bp paired-end reads using the Illumina NovaSeq 
6000 platform according to the manufacturer’s protocols. The 1.1-nM library was 
used for flow cell loading. The NovaSeq control software NCS v.1.5 was used. 
Image analysis, base calling and quality checking were performed with the Illumina 
data analysis pipeline RTA3.3.5 and bcl2fastq v.2.20.

Metagenome quality control and preprocessing. All sequenced metagenomes 
were quality control edited using the preprocessing pipeline as implemented in 
https://github.com/SegataLab/preprocessing. Preprocessing consisted of three 
main steps: (1) read-level quality control; (2) screening of contaminants, that is, 
host sequences; and (3) split and sorting of cleaned reads. Initial quality control 
involves the removal of low-quality reads (quality score <Q20), fragmented short 
reads (<75 bp) and reads with >2 ambiguous nucleotides. Contaminant DNA was 
identified using Bowtie 2 (ref. 67) using the -sensitive-local parameter, allowing 
confident removal of the phi X 174 Illumina spike-in and human-associated reads 
(hg19). Sorting and splitting allowed for the creation of standard forward, reverse 
and unpaired reads output files for each metagenome.

Microbiome taxonomic and functional potential profiling. The metagenomic 
analysis was performed following the general guidelines68 and relying on 
the bioBakery computational environment61. The taxonomic profiling and 
quantification of organisms’ relative abundances of all metagenomic samples were 
quantified using MetaPhlAn v.3.0 (ref. 62). The updated species-specific database 
of markers was built using 99,237 reference genomes representing 16,797 species 
retrieved from GenBank (January 2019). From this set of reference genomes, we 
extracted a total of 1,132,166 markers used to profile 13,393 species. This set of 
species also included 83 species defined by the CAG group approach32 that were 
very genetically distinct from species represented by isolate genomes and for which 
the use of unique marker genes limited the potential issues of using metagenomic 
assemblies reconstructed over multiple samples. Compared to the previous version 
of the MetaPhlAn2 database (mpa_v20_m200), the updated database profiled 
7,116 more species. Metagenomes were mapped internally in MetaPhlAn v.3.0 
against the marker gene database with Bowtie 2 v.2.3.4.3 with the parameter 
‘very-sensitive’. The resulting alignments were filtered to remove reads aligned with 
an MAPQ value <5, representing an estimated probability of the likelihood  
of the alignments.

To estimate the microbiome species richness of an individual from the 
taxonomic profiles of PREDICT 1 participants, we computed two alpha diversity 
measures: the number of species found in the microbiome (‘observed richness’); 
and the Shannon entropy estimation. We did not perform rarefaction before the 
alpha diversity calculations because of the low s.d. in sequencing depths and the 
verified missing correlation between the metadata of interest and sequencing 
depth. Microbiome dissimilarity between participants (beta diversity) was 
computed using the Bray–Curtis dissimilarity on microbiome taxonomic profiles.

Functional potential analysis of the metagenomic samples was performed 
using HUMAnN2 (v.0.11.2 and UniRef database release 2014-07) (ref. 63), which 
computed the pathway profiles and gene family abundances.

Metagenomic assembly. Metagenomic samples were processed to obtain MAGs 
following the procedure we used elsewhere5. In brief, we used MEGAHIT 
v1.2.9 (ref. 64) with the parameter -k-max 127 for assembly; assembled contigs 
≥1.5 kilobases (kb) were considered for the binning step performed using 
MetaBAT2 v.2.14 (ref. 65) with the parameters -m 1500 -unbinned. Quality control 
of the obtained MAGs was performed using CheckM v.1.0.18 (ref. 66) using default 
parameters. High- and medium-quality microbial genomes were integrated into 
the existing database of >150,000 human MAGs.

Collection and processing of habitual diet information. Habitual diet 
information was collected using FFQs. For the UK, the European Prospective 
Investigation into Cancer and Nutrition (EPIC) FFQ was used; in the USA, the 
Harvard semiquantitative FFQ was used.
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For the UK, we used an adapted 131-item EPIC FFQ that was developed and 
validated against pre-established nutrient biomarkers for the EPIC Norfolk69. 
The questionnaire captured average intakes in the past year. UK nutrient intakes 
were determined using the FETA software (v. 2.53) to calculate macro- and 
micronutrient data70. Sixteen additional foods in the modified FFQ were reviewed 
by two dietitians and one nutritionist who manually matched food items to 
corresponding foods within McCance and Widdowson’s The Composition of Food71, 
with portions allocated according to the Food Portion Sizes72. US participants 
completed the Harvard 2007 Grid 131-item FFQ previously validated against 
2-week dietary records73. Nutrient intakes were estimated using the Harvard 
nutrient database (version SFFQ 043019; https://regepi.bwh.harvard.edu/health/
nutrition/index.html). Submitted FFQs were excluded if more than 10 food items 
were left unanswered or if the total energy intake estimate derived from the FFQ 
as a ratio of the participant’s estimated basal metabolic rate (determined by the 
Harris–Benedict equation74) was more than 2 s.d. outside the mean of this ratio 
(<0.52 or >2.58).

The following dietary indices were calculated as described below and according 
to categorization listed in Supplementary Tables 2 and 4.

HFD index. The HFD index considers the number, distribution and health value 
of consumed foods. To obtain this index, FFQ foods were first aggregated into 15 
food groups according to the HFD20. Health values were then derived from the 
German Nutrition Society dietary guidelines (https://www.dge.de/en/) and the 
weight of each food group was multiplied by its corresponding health value. Scores 
were divided by the maximum (health value = 0.26) to bind values between 0 and 
1 before multiplication with the Berry index. The original HFD was used instead 
of the US-HFD for the following reasons: the original HFD gives greater emphasis 
to plant-based foods and less to meat than the US-HFD, which would more closely 
align with hypothesized microbiome-plant food/fiber interactions; converting 
UK g per serving to US volume measures (as required for the US-HFD) would 
introduce additional error to the FFQ estimates.

HEI 2010. The HEI 2010 (ref. 21) assesses to which extent an individual’s food 
intake aligns with the Dietary Guidelines for Americans 2010 (ref. 75) developed 
by the US Department of Agriculture. These guidelines cover a total of 12 food 
groups and nutrients. The HEI has 9 adequacy (encouraged) and 3 moderation 
(discouraged) components; first, a density approach is used to set per 1,000 kcal 
calories; and second, least restrictive standards are employed, that is, those that 
are easiest to achieve among recommendations that vary by energy level, sex 
and/or age. Total fruits, whole fruits, total vegetables, greens and beans, whole 
grains, dairy (lean portion only), total protein foods (lean portion of meat only), 
seafood and plant proteins and fatty acids (PUFAs + MUFAs/SFAs) are considered 
adequate, whereas refined grains, sodium and empty calories (considered added 
sugars, solid fats and alcohol above 13 g per 1,000 kcal) are considered detrimental 
and should be consumed in moderation. The index ranges from 0 (not in 
agreement with the guidelines) to 100 (completely in agreement with  
the guidelines).

PDI. Three versions of the PDI30 were considered: the original PDI; the healthy 
hPDI; and the uPDI. Eighteen food groups (amalgamated from the FFQ food 
groups; Supplementary Table 2) were assigned either positive or reverse scores 
after segregation into quintiles, as outlined in Supplementary Table 4 (ref. 30). 
Participants with an intake above the highest quintile for the positive score received 
a score of 5. Those below the lowest quintile intake received a score of 1. A reverse 
value was applied for the reverse scores. The scores for each participant were 
summed to create the final score. For the PDI, a positive score was applied to the 
healthy and less healthy/unhealthy plant foods and a reverse score was applied to 
the animal-based foods. For the hPDI, positive scores were applied to the healthy 
plant foods and a reverse score to the less healthy/ unhealthy plant foods and 
animal-based foods. For the uPDI, a positive score was applied to the less healthy/
unhealthy plant foods and a reverse score was applied to the healthy plant foods 
and animal-based foods.

Animal score. The animal-based score categorized animal foods into healthy and 
less healthy/unhealthy categories according to previous epidemiological studies76–84. 
A similar approach to the PDI scoring was applied to the animal-based food 
groups, with either a positive (healthy) or reverse (less healthy/unhealthy) quintile 
scoring (Supplementary Tables 2 and 4).

The aMED score. Adherence to the aMED diet was calculated by following the 
method outlined by Fung et al.22. Nine food/nutrient categories were included 
(Supplementary Table 4) and the score ranged from 0 to 9 (least to most 
Mediterranean). To form groups, weekly intake frequencies were first multiplied 
for assigned foods by the amount in g per serving and then divided by seven to 
determine g per day. Next, food gram amounts were summed to make the final 
category total. For all food categories and the fatty acid intake ratio, the median 
intake of each category was calculated. A score of 0 (no aMED) or 1 (aMED) was 
given for each category depending on whether the participant was above or below 
the median intake. For alcohol intake, a range was used for score assignment: 

females: 5–25 g d−1; males: 10–50 g d−1 were assigned a score of 1, while those 
above or below this range were assigned a score of 0. Finally, the aMED was then 
generated by the summation of each category score.

Food groups. For individual analyses of food groups-microbe interaction, food 
groups were formed by aggregation of FFQ foods into the 18 PDI food groups plus 
margarine and alcohol (Supplementary Table 4).

Percentage of plants within the diet. The percentage of plants within the diet was 
calculated as the weight (g) of plant foods within the total weight (g) of the diet 
after adjustment of FFQ foods into quantities (g) per week.

Number of plant foods. For the number of plant foods, each plant food item 
within the FFQ above the value of 0 g was allocated a score of 1 and summed for 
each participant. For the total number of plants and the number of healthy and 
unhealthy plants, FFQ food items were allocated into groups according to the  
PDI food groupings.

Collection and processing of fasting and postprandial markers. Venous blood 
samples were collected as outlined in the accompanying protocol paper16. Briefly, 
participants were cannulated and venous blood was collected at fasting (before 
a test breakfast) and at 9 time points postprandially (15, 30, 60, 120, 180, 240, 
270, 300 and 360 min). Plasma glucose and serum C-peptide and insulin were 
measured at all time points. Serum TG was measured at hourly intervals and 
serum metabolomics (nuclear magnetic resonance by Nightingale Health using 
the 2020 platform) at 0, 4 and 6 h. Fasting samples were analyzed for lipid profile, 
thyroid-stimulating hormone, alanine aminotransferase, liver function panel and 
complete blood count analysis.

Continuous glucose monitoring on days 2–14 was measured every 15 min 
using Freestyle Libre Pro continuous glucose monitors (Abbott) fitted on the upper, 
nondominant arm at participants’ baseline clinical visits. Given the CGM device 
requires time to calibrate once fitted to a participant, CGM data collected 12 h and 
onwards after activating the device were used for analysis.

Dry blood spot analysis of TG and C-peptide was completed by participants 
on the first 4 d of the home phase while consuming test meals. The time points 
were dependent on the test meal as described elsewhere8,16. Test cards were stored 
in aluminum sachets with desiccant once completed and placed in the refrigerator 
at the end of the study day or until participants mailed them back to the study site. 
Dry blood spot cards were frozen at −80 °C on receipt in the laboratory until being 
shipped to Vitas for analysis (Vitas Analytical Services).

Specific time points and increments for TG, glucose, insulin and C-peptide 
were selected for the current analysis to reflect the different pathophysiological 
processes for each measure as described in our protocol16. The incremental area 
under the postprandial TG (0–6 h), glucose (0–2 h) and insulin (0–2 h) curves 
(iAUCs) were computed using the trapezium rule85.

Detailed descriptions of sample collection, processing and analysis have been 
reported elsewhere8,16.

Machine learning. The machine learning framework employed was based on 
the scikit-learn Python package86. The machine learning algorithms used for the 
prediction and classification of personal, habitual diet, fasting and postprandial 
metadata are based on random forest regression and classification. We selected 
random forest-based methods a priori since it has been repeatedly shown 
to be particularly suitable and robust to the statistical challenges inherent to 
microbiome abundance data40,87. For both the regression and classification tasks, 
a cross-validation approach was implemented, which was based on 100 bootstrap 
iterations and an 80/20 random split of training and testing folds. To specifically 
avoid overfitting as a result of our twin population and their shared factors, we 
removed any twin from the training fold if their twin was present in the test fold.

For the regression task, we trained a random forest regressor to learn the 
feature to predict and simple linear regression to calibrate the output for the test 
folds on the range of values in the training folds. From the scikit-learn package, 
we used the RandomForestRegressor with the n_estimators=1000, criterion = mse 
and max_features = sqrt parameters and LinearRegression with default parameters. 
For the classification task, we divided the continuous features into two classes: 
the top and bottom quartiles. From the scikit-learn package we used the 
RandomForestClassifier function with the n_estimators=1000, max_features = sqrt 
parameters.

We used random forest classification and regression on both species-level 
taxonomic relative abundance and functional potential profiles. For taxonomic 
abundances, we used the species-level relative abundances as estimated by 
MetaPhlAn v.3.0 (see above normalized using the arcsin-sqrt transformation 
for compositional data). For functional profiles, we considered both raw relative 
abundance estimates of single microbial gene families and pathway-level relative 
abundance as provided by HUMAnN2.

As an additional control, we verified that when randomly swapping the target 
labels or values (classification and regression, respectively), the performances 
reflected a random prediction, hence an AUC very close to 0.5 and a nonsignificant 
correlation between the real and predicted values approaching 0.
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Statistical analysis. Spearman correlations (reported with ρ in the text) were 
computed using the cor.test from the stats R package (version 3.5.1) and pcor.test 
from the ppcor R package (version 1.1), respectively. Correlations and P values 
were computed for each couple of metadata and species; P values were corrected 
using the FDR through the Benjamini–Hochberg procedure, which are reported 
in the text as q values. We considered significant correlations with a q < 0.2. 
Significant species were selected by ranking them according to their number 
of significant associations for the panel of metadata considered; then, the top 
30 unique species were considered for each panel of metadata. In the heatmaps 
for partial correlations, the asterisk indicates that the correlation index for the 
corresponding species metadata pair is significant at an FDR ≤ 0.2.

The contribution of metadata variables to microbiota community variation 
was determined by distance-based redundancy analysis (dbRDA) on species-level 
Bray–Curtis dissimilarity and Aitchison distance with the capscale function in 
the vegan R package (version 2.5.6)88. Correction for multiple testing (Benjamini–
Hochberg, FDR) was applied and significance was defined at an FDR < 0.1. 
The cumulative contribution of metadata variables or metadata categories was 
determined by forward model selection on dbRDA (stepwise dbRDA) with the 
ordiR2step function in vegan, with variables that showed a significant contribution 
to microbiota community variation in the previous step. Because of the high 
consistency between the two distance functions, we performed the cumulative 
distribution analysis using the Bray–Curtis dissimilarity. Only metadata variables 
with <15% missing data and without high collinearity with other variables 
(Spearman ρ < 0.8) were used as input in the stepwise model.

Data validation on the US cohort and on the curatedMetagenomicData 
datasets. As independent validation, we considered the publicly available datasets 
collected in the curatedMetagenomicData v.1.16.0 R package34. Of the 57 datasets 
available, we selected those that had samples with the following characteristics:  
(1) gut samples collected from healthy adult individuals at first collection 
(days_from_first_collection=0 or not applicable); (2) samples with age and BMI 
data available and BMI interquartile range (IQR) of these samples between 3.5 
and 7.5 (±2 regarding the PREDICT 1 UK IQR of 5.5; Extended Data Fig. 5). 
For each dataset with samples meeting the above criteria, only datasets with at 
least 50 samples were considered: CosteaPI_2017 (ref. 89) (84 samples out of 279); 
DhakanDB_2019 (ref. 90) (88 samples out of 110); HansenLBS_2018 (ref. 91) (58 
samples out of 208); JieZ_2017 (ref. 92) (157 samples out of 385); SchirmerM_2016 
(ref. 14) (396 samples out of 471); and ZellerG_2014 (ref. 93) (59 samples out of 199).

We used the previously selected validation datasets from 
curatedMetagenomicData in two analyses: one based on machine learning to verify 
the reproducibility of the machine learning model we trained using the PREDICT 
1 UK samples; and the second to verify the species-level correlations found in the 
PREDICT 1 UK cohort. For the first task, we applied a regression algorithm to 
predict BMI and age. Three different cross-validation approaches were used. First, 
using each dataset independently in 100 bootstrap iterations and an 80/20 random 
split of training and testing folds. Second, one more iteration was performed using 
the PREDICT 1 UK dataset as the training fold and each dataset as the testing 
fold. Third, a final prediction was made using LODO, meaning that all datasets 
(PREDICT 1 UK, PREDICT 1 USA and the curatedMetagenomicData datasets) 
were considered together and each validation dataset was successively used as 
the test fold while all others were used for training. An additional validation 
performed using the curatedMetagenomicData datasets was done by applying a 
pairwise Spearman correlation for each species in each curatedMetagenomicData 
dataset against BMI and age. For each correlation, we selected the top associated 
species in PREDICT 1 UK (FDR, q < =0.05) and reported their correlation in 
curatedMetagenomicData. For those species found also in the PREDICT 1 USA 
dataset, we also reported their correlation.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The metagenomes are deposited in European Bioinformatics Institute European 
Nucleotide Archive under accession no. PRJEB39223. The non-metagenomic 
data used for analysis in this study are held by the Department of Twin Research 
at King’s College London. The data can be released to bona fide researchers using 
our normal procedures overseen by the Wellcome Trust and its guidelines as part 
of our core funding. We receive around 100 requests per year for our datasets and 
have three meetings per month with independent members to assess proposals. 
The application can be found at https://twinsuk.ac.uk/resources-for-researchers/
access-our-data/. This means that data need to be anonymized and conform to 
GDPR standards.

Code availability
Computational analyses were performed using the bioBakery suite of tools; 
species-level microbial abundances were computed using MetaPhlAn v.3.0 (https://
github.com/biobakery/MetaPhlAn). Functional potential profiling was carried out 
with HUMAnN v.2.0 (https://github.com/biobakery/humann; Methods).
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Extended Data Fig. 1 | Alpha diversity linked with personal factors, habitual diet, fasting, and postprandial markers. a, Microbiome alpha diversity 

computed using the Shannon index correlated markers from the four categories: personal, habitual diet, fasting, and post-prandial. Reported are the five 

strongest positive and negative Spearman correlations for each category with p < 0.05. All correlations and p-values available in the Supplementary  

Table 1. b, Inter-sample microbiome distances (beta-diversity) were substantially lower, that is closer, among samples from the same individuals (two 

weeks apart) compared to those amongst different individuals. Gut microbial communities in monozygotic twins were slightly more similar than in 

dizygotic twins (Mann–Whitney U test two-sided p = 0.06), which, in turn, were more similar than unrelated individuals (p < 1e-12), even after adjusting 

for age (p < 1e-12). c, After excluding twin status (that is non-twin, vs. mono vs. dizygotic twins) from the model, personal factors still accounted for the 

greatest proportion of variance explained in overall microbial diversity, followed by dietary habits, fasting and postprandial cardiometabolic blood markers 

(by cumulative stepwise dbRDA). d, Cumulative (left bars) contributions and individual (right bars) contributions for each metadata variable based on 

Bray-Curtis dissimilarity. Box plots show first and third quartiles (boxes) and the median (middle line), whiskers extends up-to 1.5× the interquartile range.
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Extended Data Fig. 2 | Species-level correlation with single foods. The figure shows the species-level correlations (Spearman) with single food quantities 

as estimated from the food frequency questionnaires. Only foods with at least 5 significant associations (q-value≤0.2) are displayed. Species are sorted by 

the number of significant associations, and the top 30 are reported in the figure.
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Extended Data Fig. 3 | Top foods, food groups, nutrients, and dietary patterns validated in the PREDiCT 1 uS cohort. The application of the RF regression 

model trained on the PREDICT 1 UK cohort on the PREDICT 1 US participants, validating the associations with food-related variables found in the  

PREDICT 1 UK.
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Extended Data Fig. 4 | Performance for random Forest regression and classification on microbiome functional potential in predicting fasting 

measurements, total cholesterol and triglycerides in different lipoproteins. The figure shows the performance of both RF regression and classification 

tasks trained on microbiome gene families profiles in predicting (a) the fasting measurements presented in Fig. 4a, sorted as in Fig. 4a. b, Predicting 

performances of the total cholesterol and (c) of triglycerides in different sizes of lipoproteins. For each lipoprotein, we considered its concentration 

values at both fasting and postprandial (6 h), and also the difference (rise) between the post-prandial concentration and the fasting one. Box plots show 

the distribution of the Spearman correlations (left axis) between real and predicted values using RF regression. Box plots show first and third quartiles 

(boxes) and the median (middle line), whiskers extends up-to 1.5× the interquartile range. Circles show the median AUC (right axis) of RF classification in 

predicting the bottom quartile of the distribution vs. the top quartile.
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Extended Data Fig. 5 | Distributions of BMi in each curatedMetagenomicData dataset. The figure shows the distributions of BMI values for the datasets 

available in curatedMetagenomicData. This was used to further select those datasets with a comparable range of values (interquartile range between  

3.5 and 7.5) as the one in the PREDICT 1 UK dataset (IQR of 5.5), to be used as validation datasets for the associations found. Box plots show first and  

third quartiles (boxes) and the median (middle line), whiskers extends up-to 1.5× the interquartile range.
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Extended Data Fig. 6 | Pairwise partial Spearman correlations between bacterial species and total lipids and cholesterol in lipoproteins. a, The 

heatmap shows the species-level correlations with total lipids in lipoprotein variables at fasting, post-prandial (6 h), and the difference (rise) between the 

postprandial and fasting concentrations. The 30 species with the highest number of significant associations (FDR ≤ 0.2) are shown. The asterisk indicates 

a significant correlation between species and metadata variable using a t-test two-sided, corrected with FDR with q < 0.2. b, The heatmap shows the 

species-level correlations with total cholesterol in lipoprotein variables at fasting, post-prandial (6 h), and the difference (rise) between the postprandial 

and fasting concentrations. The 30 species with the highest number of significant associations (FDR ≤ 0.2) are shown. The asterisk indicates a significant 

correlation between species and metadata variable using a t-test two-sided, corrected with FDR with q < 0.2. All correlations, p-values, and q-values are 

available in the Supplementary Table 6.
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Extended Data Fig. 7 | Species-level correlations with triglycerides in lipoproteins. The heatmap shows the species-level correlations with triglycerides in 

lipoprotein variables at fasting, post-prandial (6 h), and the difference (rise) between the postprandial and fasting concentrations. The 30 species with the 

highest number of significant associations (FDR ≤ 0.2) are shown. The asterisk indicates a significant correlation between species and metadata variable 

using a t-test two-sided, corrected with FDR with q < 0.2. All correlations, p-values, and q-values are available in the Supplementary Table 6.
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Extended Data Fig. 8 | Pairwise partial Spearman correlations between bacterial gene families and pathway abundances with clinical and metabolic risk 

scores, glycaemic and inflammatory measures, and lipoproteins. a, The heatmap shows gene families correlations with the set of metadata presented 

in Fig. 5a–c reporting the top 2,000 genes selected among those with at least 20% prevalence on their number of significant correlations (q < 0.2). Gene 

families’ correlations are showing the same clusters as the species-level correlations in Fig. 5a–c. b, The heatmap shows pathway abundances correlations 

with the set of metadata presented in Fig. 5a–c reporting all the pathways at 20% prevalence (349 in total). Pathway abundances correlations are showing 

the same cluster structure as the species-level correlations in Fig. 5a–c.
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Extended Data Fig. 9 | Concordance of Random Forest scores with species-level partial correlations. Volcano plots of the scores assigned to each 

species by Random Forest and their partial correlation, showing an overall concordance between the two independent approaches. We considered the 

top 5 metadata variables for the six metadata categories: a, Foods, bacon (g) (corr. 0.49), garlic (g) (corr. 0.424), unsalted nuts (g) (0.422), dairy dessert 

(g) (corr. 0.421), salted nuts (g) (corr. 0.395). b, Food groups, nuts (corr. 0.468), tea and coffee (corr. 0.436), meat (corr. 0.42), legumes (corr. 0.374), 

vegetables (corr. 0.371). c, Nutrients, lactose (corr. 0.442), niacin (corr. 0.381), maltose (corr. 0.361), sucrose (corr. 0.344), total carbohydrates (corr. 

0.324). d, Nutrients normalized by daily energy intake, magnesium (corr. 0.472), starch (corr. 0.436), total carbohydrates (corr. 0.422), non-starch 

polysaccharides (NSP) (corr. 0.421), lactose (corr. 0.414). e, Dietary patterns, healthy plant percentage (corr. 0.492), healthy PDI (corr. 0.472), hei score 

(corr. 0.47), HFD (corr. 0.408), total plants percentage (0.388). f, Lipoproteins, M-HDL-L 6 h rise (corr. 0.406), IDL-C 6 h (corr. 0.4), HDL-L 6 h rise  

(corr. 0.397), XL-HDL-C 0 h (corr. 0.395), Total Cholesterol 4 h rise (corr. 0.391).
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Extended Data Fig. 10 | Prevotella copri and/or Blastocystis presence are indicators of a more favourable postprandial glucose response to meals.  

a–c, Differential analysis of visceral fat, HFD and glucose iAUC 2 h after standardised breakfast according to presence-absence of one and both of P. copri 

and Blastocystis. The analysis reveals that both these species are indicators of reduced visceral fat, good cholesterol and meal-driven increase of glucose.  

d,e, Differential analysis of C-peptide and triglycerides at different time points according to presence-absence of one and both of P. copri and Blastocystis. 

The distributions of the concentrations for C-peptide and triglycerides were typically lower when one or both are absent. An asterisk between two box 

plots represents a significant p-value (p < 0.05) according to the Mann-Whitney U test (two-sided, Supplementary Table 8). Box plots show first and third 

quartiles (boxes) and the median (middle line), whiskers extends up-to 1.5× the interquartile range. P-values are available in Supplementary Table 8.
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