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Abstract
Recognizing and treating the early stages of type 2 diabetes
(T2D) is the most cost effective way to decrease prevalence,
before heart disease, renal disease, blindness, and limb
amputation become inevitable. In this study, we employ high
resolution gut microbiome metatranscriptomic analysis of
stool samples from 53,970 individuals to identify predictive
biomarkers of type 2 diabetes progression and potential for
diagnosis and treatment response. The richness of the
metatranscriptomic data enabled us to develop a T2D risk
model to delineate individuals with glycemic dysregulation
from those within normal glucose levels, with ROC-AUC of
0.83+/-0.04. This risk score can predict the probability of
having insulin dysregulation before detecting high glycated
hemoglobin (HbA1c), the standard-of-care marker for
prediabetes and diabetes. Additionally, a machine learning
model was able to distinguish novel metatranscriptomic
features that segregate patients who receive metformin and are
able to control their HbA1c from those who do not. These
discoveries set the stage for developing multiple therapeutic
avenues for prevention and treatment of T2D.

Introduction
Type 2 diabetes (T2D) is the most prevalent endocrine disease,
affecting more than 400 million people worldwide, and this
number is expected to rise to 700 million by the year 2025
(Zhou et al., 2016) (Chatterjee et al., 2017). The increased
prevalence of T2D is a major challenge for healthcare systems
globally and novel tools are needed to reduce the burden of
T2D. Recognizing and treating the early stages (and even
predisease) is the most cost effective way to treat T2D, before
end-organ damage, such as heart disease, stroke, renal disease,
blindness and limb amputation, ensues. (Bailes, 2002).
Multiple genomic and transcriptomic studies have been

conducted on the analysis of human host samples and animal
models to elucidate the molecular mechanisms of disease
progression (Lawlor et al., 2017; Segerstolpe et al., 2016;
Sengupta et al., 2009). Although it is a complex disorder
influenced by both genetic and environmental components,
central obesity (visceral fat) is known to be the driving risk
factor (Hu, 2011).

In recent years, the gut microbiome has emerged as a
prominent new frontier in medical research, having been
found to be implicated in a range of chronic and acute health
conditions and outcomes. Gut microbiome research has
primarily focused on genomic DNA. Multiple studies have
shown that the gut microbiome is altered in individuals with
metabolic disorders, such as obesity (Turnbaugh et al., 2009)
(Ley et al., 2006), T2D (Larsen et al., 2010) (Gurung et al.,
2020) and progression of glucose intolerance (Zhang et al.,
2013), and that the gut microbiome may be a causal factor in
the development of these disease processes. (Wang et al.,
2020). (Ridaura et al., 2013). Additionally, research has
evaluated the predictive power of the gut microbiome for early
T2D risk detection (Li et al., 2020). Findings in the existing
metagenomic studies, indicated that Ruminococcus,
Fusobacterium, Blautia are positively associated, while
Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia
and Roseburia are negatively associated with type 2 diabetes
(Gurung et al., 2020).

While previous metagenomic studies have revealed
compelling insights into the role that microorganisms play in
the development of T2D, these approaches have described the
presence of organisms and genes, rather than activity of these
microbiome elements. Using non-invasive fecal samples,
Viome’s clinical grade (CLIA License Number: 32D2156145)
and fully automated metatranscriptomic technology (Hatch et
al., 2019) has the potential to facilitate large-scale public
health applications, including early diagnosis and risk
assessment for T2D.
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In this study, we utilized the gut microbiome of 53,970
individuals, using a gut metatranscriptome approach combined
with multivariate and machine learning analyses, in an effort
to answer several questions:
1. How does the microbiome change as an individual

progresses from non-diabetes (normal glucose
homeostasis), to prediabetes, to T2D? And, more
importantly, what are the microbiome functional changes
that take place throughout this spectrum of disease? In
this paper, we delineate the microbiome differences
between individuals with non-diabetes and prediabetes
and we compare these changes with the differences
between the microbiomes of individuals with prediabetes
and T2D. By establishing taxonomic and functional
progression, we should be able to inform further target
discovery for modulating the pathways of microbiome
with medications, prebiotic, probiotic, or other
supplement recommendations.

2. Can the gut microbiome provide insight into the early
diagnosis of either prediabetes or T2D? With advanced
predictive modeling, we aimed to develop a metabolic
disease risk score, based on the gut metatranscriptome,
that can predict the probability of having insulin
dysregulation before detecting high glycated hemoglobin
(HbA1c), which is used as the standard-of-care diagnostic
for prediabetes and diabetes conditions. By using this risk
score for T2D, patients can then take action to either
prevent or postpone further progression of disease. Our
aim is to pick up early signals for the beginning of
metabolic disease, not just the beginning of diagnosis of
the same. Related question is to understand if people who
follow food recommendations would show improved
microbiome diabetes risk scores?

3. What are the microbiome correlates of response to current
treatments for individuals with T2D? There are multiple
medications that are used in the treatment of T2D. For
individuals who have already been diagnosed with T2D
(or those with a prediabetes condition receiving treatment
in the form of medication), can we identify
microbiome-related determinants of response to
treatment? Most frequently, patients receive metformin,
and we aim to determine the microbiome signature of

controlling HbA1c while they are taking metformin. For
the patients who are not able to control their HBA1c
while on metformin, this signature may point to additional
interventions that can assist with glucose control.

4. For individuals who choose not to take treatment in the
form of medications or insulin therapy (and instead rely
on diet and lifestyle changes), can we determine if there
are microbiome correlates of response to these
non-medication treatments? Can these correlates inform
how to modulate the microbiome with a positive
treatment effect. In other words, are there microbiome
pathways that can be modulated so as to achieve better
glycemic control? If so, then regular surveillance of these
changes should be aided by the microbiome readout over
time.

Table 1 shows the characteristics of our discovery (n=50,942)
and validation (n=3,028) cohorts.

Table 1: Study cohorts

Discovery Validation

Number of samples
Non-diabetes controls
Pre-diabetes
Type II Diabetes

50,942
50,251

462
229

3,028
2,000
770
258

Sex (% female)
Non-diabetes controls
Pre-diabetes
Type II Diabetes

58.7
58.6
68.2
64.4

65.75
63.25
75.19
56.98

Age (y) mean std±
Non-diabetes controls
Pre-diabetes
Type II Diabetes

41.9 13.7±
41.8 13.7±
57.3 11.4±
59.9 11.4±

46.6 15.1±
41.3 13.6±
55.6 12.5±
60.7 11.2±

BMI  (all / non-med)
Normal < 25
Overweight 25 to <30
Obese >= 30

29949 / 17159
14439 / 8013
5863 / 2810

1442
880
706
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Figure 1. Discovery cohort, used for statistical analysis and model training/development. (Note: Metformin (n=80) are people
using only metformin; other drugs (n=23) are people using drugs other than metformin; the remainder of medicated (n=150) were
people using metformin along with other drugs, and are not shown here, nor were used in any analysis.)

Results
Phenotype stratification. Figure 1 describes the clinical
phenotypes based on the self-reported labels in our study. The
non-diabetic group includes presumed healthy individuals who
are not reporting medical or mental conditions and are not
actively taking medications, as well as individuals who have
reported comorbidities or are taking medications. The
non-diabetic group excludes anyone taking antibiotics within
one month of sample collection, proton pump inhibitors and/or
acid suppressants, had abdominal surgery or report diseases
that may affect gut microbiome significantly (e.g. IBS, IBD,
colon cancer). For this group we have matched the age, sex
and body mass index (BMI) to those in the prediabetic and
T2D groups.

The first stratification is based on the type of diagnosis that
patients report, i.e., prediabetes and T2D. Within these two
groups, there are individuals who received treatment in the
form of medications, as well as individuals who are not on
medications, and instead have diet and lifestyle changes. We
consider within the T2D group that subjects who have

reported HbA1c <6.5 to be able to control their HbA1c using
medication, and the subjects with >=6.5 to not be able to
control their HbA1c. We used the stratification in Figure 1 to
analyze disease progression, diagnosis and medication control,
using multivariate statistical analysis and machine learning.

Summary of analyses. Table 2 presents a summary of the
comparison cohorts and relevant analyses related to disease
progression and T2D risk score. The first row represents the
main cohort comparison used as the basis for the T2D risk
score, to be described in more detail below. The next three
rows represent the analyses for disease progression. The last
row presents the analysis for the obesity/BMI related
microbial features.

Obesity-related microbial composition and functional
relevance. One of the most frequently reported confounding
factors for T2D disease progression is obesity. Here we first
assessed the contribution of obesity phenotype to microbiome
by applying a statistical Kruskall-Wallis (KW) model from
27,982 subjects in our cohort who had low BMI <25
(n=17159) and belong to a normal range, intermediate
BMI>=25 and BMI <30 (n=8013) who belong to the
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overweight range and high BMI >=30 (n=2810) who belong to
the obese range.

We observed that 5485 KOs and 680 species were statistically
significant in a three-way KW analysis with FDR <0.05. In all
our further analyses, we highlight the observed obesity and
non-obesity-related features so that we can delineate the
unique microbiome associations of the type 2 diabetes state.

Disease Progression Descriptive statistics. In total, 4380 taxa
and 6797 functional KOs were identified in our cohort. Figure
2 presents the differential expression, for the most statistically
significant features (using Kruskal-Wallis method after
Benjamini-Hochberg FDR correction, p-value<=0.05). Each
figure presents non-T2D patients (in blue) who have not
received any medication vs. T2D or prediabetes patients (in
red). Supplementary figure s1 presents the differential
prevalence corresponding to the same comparison groups.

Shown in scatter plots : we observe 75 out of 4380 unique
differentially expressed microorganisms when we compare
pre-diabetic vs. non-diabetic (see Supplementary Figure s1b),
and we observe 111 unique microorganisms when we compare
T2D vs non-diabetic samples (see Figure 2a). We observe 546

differentially expressed KOs in pre-diabetic vs. non-diabetic
(see Supplementary figure s1d) and 206 differentially
expressed KOs when we compare T2D vs non-diabetic
subjects (see Figure 2b). In contrast with previous studies
which are performed using 16s technology, we are able to
observe a wider spectrum of differential expression and infer
functional modules directly from the experimental
observations.

Shown in side-by-side scatter plots (see Supplementary Figure
s1): we observe 97 statistically significant species out of 4380
unique active microorganisms when we compare pre-diabetic
vs. non-diabetic (see Supplementary Figure s1a - left panel),
and we observe 78 unique microbial species when we compare
T2D samples vs. non-diabetic (see Supplementary Figure s1a -
right panel) using Chi-squared tests after Benjamini-Hochberg
FDR correction, p-value<=0.05). In addition, the results from
the SVM model are presented in Supplementary Figure s5.

We observe 677 prevalent KOs pre-diabetic vs. non-diabetic
(see Figure s1c left panel) and 115 prevalent KOs when we
compare T2D vs non-diabetic samples (see Figure s1c right
panel).

Table 2. Summary of methods and results for progression of disease and diagnostics for type 2 diabetes (T2D)
*med, medicated; non-med, non medicated

Comparison cohorts Cohort
matching
criteria

Diff. Prev.
sig. feats.
(p.adj < 0.05)

Diff. Expr.
sig. feats.
(p.adj < 0.05)

Classific
ation method

Mean
ROC-AUC

Mean
balanced
accuracy

Classifier
#features
(KOs +
species)

T2D med+non-med* (n=206) vs
Non-T2D med+non-med
(n=50251)

age, sex, bmi 1415 KOs
266 species
(Chi2 test)

1352 KOs
338 species
(KW test)

SVM + effect
size feature
selection

0.83 0.76 922

T2D non-med (n=73) vs
Non-T2D non-med (n=28679)

age, sex, bmi 115 KOs
78 species
(Chi2 test)

206 KOs
111 species
(KW test)

SVM + effect
size feature
selection

0.82 0.73 922

T2D non-med (n=73) vs
Pre-T2D non-med (n = 129)

none 0 KOs
0 species
(Chi2 test)

1 KO
0 species
(KW test)

SVM + effect
size feature
selection

0.61 0.56 695

Pre-T2D non-med (n=129) vs
Non-T2D non-med (n=28679)

age, sex, bmi 677  KOs
97  species
(Chi2 test)

546 KOs
75 species
(KW test)

SVM + effect
size feature
selection

0.72 0.67 922

BMI model for non-med:
Normal <25 (n=17159),
Overweight 25 to <30 (n=8013),
Obese >=30 (n=2810)

none NA 5485 KOs
680 species
(KW test)

BMI features are incorporated into all other analyses
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(a) (b)

Figure 2: Progression of disease: differentially expressed features in a color-bar scatter plot (KW statistics, FDR p-value < 0.05).
Panels present scatter plots of resulting patient features which include (a) differentially expressed species shown as circles between
non-medicated T2D vs non-medicated non-T2D and (b) differentially expressed KOs shown as triangles between non-medicated
T2D vs non-medicated non-T2D. Filled markers represent obesity related features, and hollow markers represent T2D-unique
features.

Ruminococcus and Blautia genera
We single out results from differential prevalence and
expression of bacteria belonging to Blautia and
Ruminococcus, genera which are reported in the literature as
positively associated with type 2 diabetes. However, in our
metatranscriptomic data we observe that Ruminococcus
bicirculans, R. callidus, and R. champallensis have actually
lower expression in T2D patients, and only sp. DSM 100440
has higher prevalence and expression in T2D patients (see

Supplementary Table s1 and Supplementary Figure s2a). In
the literature, there is a prevalent notion that at the genus level,
Blautia is positively associated with T2D. In our data, with
much higher resolution, we are able to observe that out of the
8 species, Blautia massiliensis and Blautia Marseille-P3087
have lower prevalence and expression in T2D as opposed to
the non-T2D while there are six other species that have indeed
higher prevalence and expression in Type 2 Diabetes patients
(see Supplementary Table  s2 and Supplementary Figure s2b).
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(a)

(b)

Figure 3. Type 2 diabetes diagnostic analysis and support vector machine approach. a) ROC curves of diagnostic classifiers b) Risk
scores of the validation cohort.

Diagnostic Model and Risk Score
To pick up early signals of metabolic disease, we performed
statistical analysis to derive features that are associated with
all the subjects with T2D vs. the general population who may
have other comorbidities and may be subjected to different
types of treatments, and separately performed ML analysis to
derive a risk score for T2D. As shown in Supplementary
Figure S4b, taxa and KO diversity decrease in the T2D
patients (KO diversity is significant p=3.27e-07). We present
the taxonomic composition using the differential prevalence
(based on Chi-square method) (see Supplementary Figure S6c)
and KOs (see Supplementary Figure S6e) of the microbiomes
of Type 2 Diabetes patients vs. individuals in the general
population. In Supplementary Figure S6d) we present the
differential expression of taxa and in Supplementary S6f)
functional changes using differential expression based on
Kruskal-Wallis method. We observe that there is a great
overlap between the highest prevalent taxa with the statistical
test that we presented in Figure 2, as 65 species are in
common (out of 266 species) with the statistically significant
species from the general population vs T2D, and yet, there are
201 unique species, which is due to the fact that there is a very
big variability across this general population where there are
influences from different comorbidities as well as various
types of medications taken. Similarly, we observed that 99
(out of 338 species) that are differentially expressed are
statistically significant both in the non-medicated vs. T2D as
well as in the general population vs. T2D cohorts (taxa and
KO overlaps are presented in Supplementary Figure S6g-j).
We developed a general classifier with 922 KOs and species
which is informative to provide a risk score that can predict
whether an individual has a high risk of being diagnosed with
T2D using the gut microbiome (see Figure 3a and

Supplementary Figure S7a-b). As shown in Figure 3b), in the
validation cohort (n=3028) our model can distinguish between
type 2 diabetes (mean=62.81) and non-diabetic (mean=44.10)
individuals (t-test, p=2.41e-47), as well as between
prediabetic(mean=53.25) and non-diabetic (p=2.88e-24) and
also between T2D vs. pre-diabetic individuals (p=6.76e-07).
We observe a weak correlation between the T2D score and
BMI of the validation cohort (Rho=0.16, p=5.29e-19) (see
Supplementary Figure S7c), which suggests that the BMI
alone is not sufficient and a predictive model is still needed to
predict the risk of developing T2D.

Metformin control of Type 2 Diabetes
In supplementary table S3 we present all the treatment related
comparison cohorts and relevant analyses. Due to the limited
number of samples we notice that the statistical analysis does
not yield results except in the metformin related analysis there
are two statistically significant KOs, namely K01273 and
K02760 which show higher differential prevalence in
non-responders (p<0.05). However, we are able to get strong
signals from an SVM approach yielding ROC-AUC 0.74 when
we compare patients who are taking metformin and are able to
control their HbA1c (<6.5), vs. patients who are unable to
control their HbA1c (>=6.5) (see figure 4a).

Supplementary Figure S8 presents our results in richness (see
Supplementary Figure S8a) and diversity (see Supplementary
Figure S8b) between Metformin-treated-HBA1c controlled
and the non-controlled groups, and we observe higher and
statistically significant differences in KO richness and species
richness in the non-controlled group. We present the scatter
plots in Figure 4.
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We also get strong signals when we compare individuals who
are not taking any medications and instead rely on diet and
lifestyle changes and are able to control their HbA1c (<6.5),
vs. patients who are unable to control their HbA1c (>=6.5)
(see Figure 4a). Supplementary Figure S8 presents our results
in richness (see Supplementary Figure S8c) and diversity (see
Supplementary Figure S8d) between non-medicated-HbA1c

controlled groups, and we observed higher statistically
significant level for species diversity (p=3.06e-02), for
patients who are able to control HbA1c. Our SVM approach
yielded a classifier showing ROC-AUC 0.69 (see Figure 4a).
We present the scatter plots of the features in Supplementary
Figure S8.

(a) (b)

(c)

(d)

Figure 4: T2D metformin treated patients with good control of HbA1c (<6.5) (n=22) vs T2D metformin treated patients who cannot
control their HbA1c (>=6.5) (n=41) AUC = 0.74+/-0.11 (a) ROC curves of metformin treatment classifiers. (b) Summary of
important features and potential functions of the metformin models. (c) Important differentially expressed species in T2D
non-medicated patients who are able to control HbA1c (<=6.5) in red vs. patients who are non-medicated and not able to control
HbA1c (>6.5) in blue. (d) Differentially expressed KOs in T2D non-medicated patients who are able to control HbA1c (<=6.5) in
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red vs. patients who are non-medicated and not able to control HbA1c (>6.5) in blue. Here we visualize species with differential
expression > 0.1; top 300 KOs with the highest importance coefficients and differential expression > 0.2.

Figure 5. Biological interpretation of the type 2 diabetes metatranscriptomic analysis and derived features. Orange and green circles
represent features enriched in the diseased (preT2D or T2D) and non-diabetic cohorts, respectively.

Discussion
Literature abounds with metagenomic studies over the past
decade, and many genera have been associated with T2D
(Gurung et al., 2020). Our study observes certain functions
and species related to opportunistic pathogens,
lipopolysaccharides (LPS), oxidative stress, and osmotic
stress, as associated with T2D. Active signatures associated
with the non-diabetic cohort, such as taxa capable of SCFA
and succinate production, are also identified (in the
Supplementary). We summarize the observations from our
data in Figure 5 and in the following section.

Taxonomical Shifts in the T2D Metatranscriptome
Studies have demonstrated the alterations of gut microbiota
composition in T2D and suggested that gut dysbiosis is a
factor in the development of insulin resistance (Allin et al.,
2015; Sircana et al., 2018). Our statistical model reveals
specific Firmicutes and Proteobacteria features enriched in
both the prediabetes and T2D samples when compared to the
presumed healthy population (Figure 2a, S1a, and S1b).
Although many of these taxa are uncharacterized, some have
been linked to T2D in metagenomics studies while others are
known opportunistic pathogens associated with altered
metabolic phenotypes. E. ramosum, a feature observed in our

diseased cohorts, is an opportunistic bacterium that may
promote intestinal absorption of glucose and fat in obesity
(Mandić et al., 2019; Woting et al., 2014), has also been
shown to be T2D-enriched in a metagenomic study of a
Chinese cohort (Qin et al., 2012). Higher prevalence and
abundance of Eggerthella and Ralstonia features, including E.
lenta and R. pickettii, are also observed in our data. The
opportunistic E. lenta has been reported to be enriched in the
T2D microbiome, and R. pickettii has been suggested to
aggravate glucose intolerance in obesity (Qin et al., 2012;
Udayappan et al., 2017). Overall, the taxonomical shifts in our
diseased cohorts highlight the presence of opportunistic
pathogens and their potentials as T2D progression markers.
On the other hand, the differential expression of
SCFA-producing taxa, succinate-producing taxa, and
bile-resistant microorganisms is noted in the non-diabetic
cohort and discussed further in the Supplement. A detailed
discussion of other T2D-enriched taxa is included in the
Supplement.

Lipopolysaccharide-Associated and Proinflammatory
Features
One of the mechanisms through which the gut microbiota
interacts with the host is through the production and shedding
of LPS, which elicits a pro-inflammatory cascaded response of
the immune system. Metabolic endotoxemia, as a result of
LPS translocation across the intestinal barrier and into the
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bloodstream, causes inflammation and is intertwined with the
development of insulin resistance (Cani et al., 2007). In our
study, this phenomenon is best highlighted by several
LPS-producing species identified to be enriched in the T2D
cohort, such as R. picketti and Escherichia albertii (Figure 2a
& S1a). The fecal abundance of R. picketti has been shown to
increase in obese patients with impaired glucose tolerance and
type 2 diabetes, and the organism has been suggested to play a
role in the development of glucose intolerance and increased
inflammatory markers (Udayappan et al., 2017). E. albertii is
an enteropathogen increasingly associated with diarrhea and
gastroenteritis. In addition, the abundance of Escherichia spp.
has been shown to increase as a result of metformin treatment
(Forslund et al., 2015). Functionally, the model also identifies
KOs involved in the biosynthesis of O-antigen, the exterior
constituent of LPS and often contributing to virulence, and the
biosynthesis, regulation, and export of LPS, particularly in the
prediabetes population.

Overall Functional Characteristics
Previous metagenome-based studies report the enrichment of
cell motility and flagellar assembly pathways in non-diabetic
individuals (Karlsson et al., 2013; Qin et al., 2012). This
finding is corroborated by our analysis using
metatranscriptomics, with bacterial motility proteins including
those involved in chemotaxis and pilus assembly identified to
be differentially expressed in the non-diabetic cohort,
particularly in the comparison to the T2D cohort. Our T2D
samples are functionally enriched with activities from
carbohydrate metabolism, glycerolipid metabolism,
glycerophospholipid metabolism, transporters, and xenobiotics
degradation. In addition, unique features such as quorum
sensing and ribosome biogenesis are also differentially
expressed in the T2D cohort (Figure 2b).

Features of Osmotic and Oxidative Stress in Prediabetes
and T2D
Functional analyses of T2D metagenomes using Chinese and
European cohorts have revealed the enrichment of transporters
for sugars, amino acids, and ions (Karlsson et al., 2013; Qin et
al., 2012). We find in our sampled population that transporter
activities, especially those of ions, are differentially prevalent
and expressed in the microbiome of the diseased cohorts
compared to that of the non-diabetes. In addition, the high
prevalence of osmolyte transporters is observed within both
the preT2D and T2D cohorts, although the signal particularly
is strong in the former, where several KOs related to glycine
betaine transport are identified. Elevated plasma tonicity is
thought to be a risk factor for diabetes progression in patients
with hyperglycemia (Stookey et al., 2004), while
hyperosmotic stress has been shown in adipocytes to suppress

insulin action through the serine phosphorylation of insulin
receptor substrate-1 (IRS1), leading to cellular insulin
resistance (Gual et al., 2003). We therefore surmise that the
prediabetic gut microbiome experiences local osmotic stress,
and by actively uptaking and accumulating osmoprotective
compounds such as glycine betaine in the cells, bacteria adapt
to osmotic stress in response to osmolarity changes in the
environment (Sleator & Hill, 2002).

The active functions of the preT2D cohort largely mirror that
of the T2D microbiome in terms of carbohydrate metabolism,
lipid metabolism, and transporters. Additionally, we identify
functions associated with oxidative stress, including KOs
involved in sequestering oxidative damage and
glutathione-dependent redox chemistry, to have higher
differential expression in preT2D. Oxidative stress can induce
inflammation and is known to play a significant role in the
progression of type 2 diabetes (Folli et al., 2011). Metabolic
endotoxemia has also been shown to promote oxidative stress,
while antibiotic treatment reduces its occurrence (P. D. Cani et
al., 2008). Previously, metagenomic studies using Chinese and
European cohorts have revealed the enrichment of oxidative
stress-related functions in T2D patients (Karlsson et al., 2013;
Qin et al., 2012); here, we hypothesize that such stress
response is discernible by the prediabetic stage at the
metatranscriptomic level.

Functional Features of the Metformin Treatment Model
Changes in microbial functions are thought to play a role in
mediating the beneficial effects of diabetes treatments, and
metformin has been associated with increased activities in
pathways such as SCFA production, lipopolysaccharide
biosynthesis, sphingolipid and fatty acid metabolism,
transporters, amino acid biosynthesis and metabolism, and
pyruvate metabolism (Forslund et al., 2015; Lee & Ko, 2014;
Ma et al., 2018; Wu et al., 2017). We summarize the functional
findings from the metformin treatment model in Figure 4b and
as follows. The analysis of taxa features is included in the
Supplement.

Adding to the observation that amino acid metabolism is
altered in the microbiome of metformin-treated patients, our
model further identifies features in cysteine and methionine
metabolism in predicting control over HbA1c. Many of such
features are involved in the metabolic reactions surrounding
cysteine, a precursor to glutathione. Glutathione is one of the
most critical molecules in the defense against oxidative stress.
Low plasma cysteine level and the resultant decreased
glutathione synthesis have been associated with inflammation
in IBD patients (Sido et al., 1998). Perhaps in line with the
importance of cysteine, several KOs surrounding the serine
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and glycine nodes are also suggested by the model. These
amino acids serve as the precursors not only to each other but
also to cysteine. Additionally, glycine is tied to increased
insulin sensitivity (Adeva-Andany et al., 2018), and earlier
studies have shown that glycine degradation activities are
enriched in metformin-untreated T2D patients and in
prediabetic exercise non-responders (Forslund et al., 2015; Liu
et al., 2020). Our treatment model also identifies some
features in lysine biosynthesis to be important. The
butyrogenic property of lysine has been demonstrated by a
human gut commensal (Bui et al., 2015), but more information
is required to clarify how microbially produced lysine is
linked to T2D.

An earlier metagenomic study has demonstrated the reduced
pyruvate synthase capacity in metformin-untreated T2D
samples (Forslund et al., 2015). In another study combining
fecal metagenomic data from T2D patients and
metatranscriptomic data from in vitro gut simulators, pyruvate
metabolism has been found to be enriched with metformin
treatment in both types of analysis (Wu et al., 2017). From our
model, KOs surrounding the pyruvate node are identified to be
important; along with several features involved in the TCA
cycle, the importance of the central carbon metabolism is thus
highlighted. Although it is unclear how these features
contribute to metformin response, a possible explanation may
be the accompanying production of SCFAs or organic acids
such as succinate from pyruvate fermentation. The importance
of energy metabolism and nucleotide biosynthesis in
metformin-responders is also highlighted by multiple KOs
from the TCA cycle, oxidative phosphorylation, and pentose
phosphate pathway (Figure 4b).

Applications include a stool test that can predict whether
metformin will work for a particular individual. Furthermore,
the gut microbiome can potentially be modulated to make
metformin more effective.

Conclusions
The richness of the metatranscriptomic data also enabled us to
develop and validate a T2D risk model, with a score that can
distinguish individuals with glycemic dysregulation
(prediabetes and diabetes) from those with normal glucose
metabolism.

Our methodologies include clinical grade laboratory analyses
and bioinformatics, machine learning, and advanced statistical
approaches leveraging data from 53,947 individuals. While
some of our findings are consistent with the published
literature, we observe novel associations as our

metatranscriptome approach allows for more direct functional
observations of the human gut microbiome.

Our metatranscriptomic analysis illuminates the significance
of both the taxa and microbial pathways pertaining to
opportunistic pathogens, lipopolysaccharides (LPS), lipid
metabolism, and ion transporters, as well as implications for
inflammation, oxidative stress, and osmotic stress in the
diseased cohorts. In the non-diabetic, presumed-healthy
population, our analysis highlights the elevated activity of
features associated with bile resistance, short chain fatty acids
(SCFAs) production, cell motility, and succinate production
that have not been reported before at the metatranscriptomic
level.

Additionally, our machine learning model was able to
distinguish novel metatranscriptomic features that segregate
patients who receive metformin and are able to control their
HbA1c from those who do not. Our model points to complex
changes in the amino acid metabolism, pyruvate metabolism,
TCA cycle, and oxidative phosphorylation, as well as proteins
related to genetic information processing important in
determining treatment response.
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Methods
Study participant recruitment. The data analyzed for the
purpose of this report was obtained from Viome customers,
who either completed a research Informed Consent Form
(approved by a federally-accredited Institutional Review
Board), or agreed to have their data analyzed in the terms and
conditions, during the purchase of the gut microbiome test. All
study data are de-identified; the laboratory, bioinformatics,
and data science team members never had access to any
personally identifiable information.
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Sample collection and laboratory analysis. The
metatranscriptomic method that we use is designed for
large-scale population analysis of stool samples as described
previously (Hatch et al., 2019), and included sample
collection, ambient temperature sample preservation, total
RNA extraction, physical removal of ribosomal RNAs
(rRNAs), preparation of directional Illumina libraries, and
Illumina sequencing. The stability of the RNA stabilizer was
tested for up to 28 days at ambient temperature, including
shipping.

Phenotype data collection
The clinical phenotypes and medication status were labeled
based on the answers to the Viome questionnaire. The
non-diabetic group includes presumed healthy individuals who
are not reporting medical conditions as well as individuals
who have reported comorbidities, while excluding anyone
taking antibiotics within one month, proton pump inhibitor
and/or acid suppressants, had abdominal surgery or with
diseases that may affect gut microbiome (e.g. IBS, IBD, colon
cancer). For this group we have matched the age, sex and BMI
to those of prediabetic and T2D group. The first stratification
is based on the type of diagnosis that patients report, including
pre-diabetes and T2D. Within the prediabetic and T2D groups
there are patients who receive treatment in the form of
medications, as well as patients who are not on medications.
We consider within the T2D group that subjects who have
reported HbA1c <6.5 to be responding to the treatment, and
the patients with >=6.5 to be the non-responders.

Bioinformatics processing. Paired-end reads were mapped to
a catalog of 53,660 microbial genome assemblies spanning
archaea, bacteria, fungi, protozoa, and viruses. (We
downloaded the complete genomes available in NCBI
Reference Sequence Database, and used the GenBank
sequence database for viral genomes.) Strain-level relative
activities were computed from mapped reads via the
expectation-maximization (EM) algorithm (Dempster et al.,
1977). Relative activities at other levels of the taxonomic tree
were then computed by aggregation according to the
taxonomic rank. Relative activities for biological functions
were computed by mapping paired-end reads to a catalog of
52,324,420 microbial genes, quantifying gene-level relative
activities with the EM algorithm, and then aggregating
gene-level activity by KEGG Ortholog (KO) annotation
(Kanehisa & Goto, 2000). The identified and quantified active
microbial species and KOs for each sample were then
provided to the T2D classifier. (More details in Supplementary
Material.)

Descriptive statistical analysis. Standard statistical analyses
described below were initially performed to analyze the
differential expression of active microorganisms and active
functions between. The data was transformed using the
centered log ratio transformation (CLR) (Aitchison, 1982)
after imputation of zero values using multiplicative
replacement (Martín-Fernández et al., 2003). The age, sex and
BMI of non-diabetic controls were matched to those of
samples with T2D or pre-diabetics. We used the
Mann-Whitney U (MWU) test (FDR < 0.05) to evaluate
differential expression and Chi-2 test (FDR < 0.05) to
evaluate differential prevalence of species or KOs between
different groups. It is important to note that this is a
descriptive statistical test to analyze features independently for
differential expression without taking into account the
interactions among features, and is thus not suitable for the
machine learning classification method (below).

Mapping KOs to functional categories for presentation.
For KO visualization scatterplots, the Python module
“Bio.KEGG” was used to take as input the KO name and
return KO hierarchy at three different levels (level-2
corresponds to level B, level-3 corresponds to level C, and
level-4 corresponds to level D in KEGG). Level 2 and level 3
annotation were assigned using EM algorithms (Dempster et
al., 1977) with KOs weighted by absolute values coefficients
or reversed p values in log scale.

Richness and diversity. Richness was estimated as the
number of present species or KOs in each sample.
Shannon-diversity was computed to evaluate the alpha
diversity of samples. All the comparisons between richness or
Shannon-diversity were done with independent t-test.

Machine learning. The microbiome data was transformed
using the centered log ratio transformation (CLR) (Aitchison,
1982) after imputation of zero values using multiplicative
replacement (Martín-Fernández et al., 2003). Machine-learned
models using stool microbiome are Support Vector Machines.
We have also tried other models such as logistic regression
and random forest, and adopted the model giving the highest
AUC. Hyperparameter optimization was done using a nested
5-fold cross-validation on the discovery cohort. The inner
layer was used for feature selection, training and tuning. We
selected the top 20% features with the highest KW test effect
size. The outer layer was used for estimation of model
performance. The hyperparameters were scored based on
balanced accuracy and the final models were evaluated based
on balanced accuracy and AUC. In the diagnostic classifiers,
the non-diabetic controls were subsampled with matched age,
sex and BMI to samples with T2D or pre-diabetics. The
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number of subsampled non-diabetic controls was three times
that of samples with conditions. For pre-diabetic v.s. T2D
classifier and all the treatment classifiers, we did not match the
two classes because of the small sample size.
The machine learning models will take in multiple features at
the same time. In the SVM model’s view, the contribution of
each feature is more complex than that of descriptive analysis
which takes one feature at a time. In our results, some models
will pick more features enriched in non-diabetic samples. It
does not necessarily mean that the model’s only predicting
non-diabetic samples. Instead, these features are enriched in
non-diabetic samples and were also features with lower
expression in diabetic samples.
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