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Abstract There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics – 
psychedelic, anesthetic, and dissociative agents – as they have demonstrated surprising efficacy in treating central nervous 
system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide 
such profound psychological benefits are still to be fully elucidated. Microglia, the CNS’s resident innate immune cells, 
are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the 
inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharma-
cological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mecha-
nism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate 
a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. 
Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as 
pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing 
their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacol-
ogy and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related 
disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
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Introduction

Challenges in Neuropharmacology

The treatment, prevention, and diagnosis of injuries and dis-
orders of the central nervous system (CNS) remain some 
of the most difficult challenges for medical and research 
fields to overcome. Pharmacotherapy is a primary mode of 
treatment for CNS disorders. Throughout history, numerous 
agents have been employed to treat and manage brain disor-
ders and injuries with varying degrees of success (reviewed 
by [1]). This heterogeneity in the outcomes of psychophar-
macotherapy stems from several implicit challenges in tar-
geting the CNS. First, the CNS is immensely complicated 
with billions of neurons and even more non-neuronal cells 
in constant communication, which makes the identification 
and specific therapeutic targeting of cells and receptors an 
arduous process. Furthermore, the brain and body are con-
stantly adapting to factors including age, environment, diet, 
stress, and hormonal cycles; drug design must take these 
numerous dynamic variables into account when aiming to 
induce a specific, desired effect. Additionally, the location 
and structural barriers of the brain are a natural physiologi-
cal challenge. The blood-brain barrier (BBB) is an essen-
tial protective mechanism but, based on molecular size and 
chemical composition of the agent, it may present a sig-
nificant obstacle to effectively delivering pharmaceuticals 
to the brain [2]. Further, research on the brain comes with 
inherent limitations, such as imaging capabilities, difficul-
ties in validating translational potential from animal mod-
els to humans, and ethical considerations associated with 
both human and animal research. A large proportion of brain 
research must also be conducted post-mortem, which may 
lessen the potential for clinical translation. Finally, in medi-
cal research, conscious and unconscious cognitive biases 
play a large part in clinical outcomes, necessitating stringent 
means of acquiring objective and quantitative measures [3].

With all this in mind, treating CNS injuries and disorders 
is an ever-present challenge for pharmacological research, 
and unsurprisingly the number of available and effective, 
disease-modifying, pharmacological treatments is small [1]. 
For example, estimates suggest that up to a third of the adult 
population will meet clinical criteria for an anxiety disor-
der at some point during their lifetime [4], while clinically 
defined depressive disorders such as major depressive dis-
order (MDD) are a leading cause of global disease burden 
[5]. Even though pharmacotherapies for MDD and other 
mood disorders are available (e.g., selective serotonin reup-
take inhibitors (SSRIs), selective norepinephrine reuptake 
inhibitors, norepinephrine-dopamine reuptake inhibitors) 
as monotherapy or in combination, there are a number of 
drawbacks, including limited efficacy, side-effects, delayed 

onset of action (3–4 weeks), and inconsistent compliance 
due to requirements for daily intake [6, 7]. Despite decades 
of research, only 1 in 3 patients with MDD achieves remis-
sion with current first-line therapies [8], while response 
rates are higher, reaching 60–85%, for anxiety disorders 
[9]. As another example, there is a major lack of pharmaco-
logical treatment options for mild or severe traumatic brain 
injury (TBI; [1]). Current options focus on relieving post-
concussive symptoms (commonly using antidepressants 
and anxiolytics) rather than treating the injury itself [10]. 
In a similar vein, many anti-psychotics used for the treat-
ment of schizophrenia and other psychotic disorders entail 
debilitating side-effects, high non-adherence rates, and are 
altogether ineffective in a subset of patients [11]. Likewise, 
very few, if any, effective pharmacological treatments exist 
for age-related disorders such as Alzheimer’s disease (AD; 
[12]). Hence, the development of novel pharmacotherapeu-
tics for CNS disorders and the need for personalized medi-
cine is of paramount importance.

Introduction to Microglia and Their Therapeutic 
Potential

Over recent years, a deep exploration of non-neuronal cells 
has revealed their critical role in CNS health and disease. 
Migrating to the CNS from the embryonic yolk sac in early 
stages of development, microglia are the primary resident 
immune cells of the CNS [13, 14]. For many years, microg-
lia were described as mediating primarily adverse effects 
of disease and aging in the brain. However, research in the 
past two decades [14–17] has since revealed the critical 
role of microglia in healthy brain function. Microglia are 
extremely motile cells at steady-state; their processes con-
stantly survey the CNS environment, allowing these cells 
to rapidly respond to homeostatic perturbations, quickly 
extending their processes and migrating to sites of injury 
or infection [15, 16]. Microglia have many complementary 
roles with astrocytes [18, 19] and are critical to the devel-
opment of oligodendrocyte progenitors [20, 21], as well as 
maintain myelination throughout the CNS [22]. There is 
broad heterogeneity in microglial states across time, space, 
and environment; microglia display distinct morphologies, 
gene expression, and ultrastructure that vary between indi-
viduals depending on species, sex, region of the CNS, and 
age, as well as across environmental factors such as diet, 
sleep, stress, exercise, intestinal microbiome, and pathol-
ogy [23–28]. Due to their ability to synthesize and release 
extracellular signalling molecules, such as anti- and pro-
inflammatory cytokines, neurotrophic factors, and various 
enzymes, microglia are highly involved in managing the 
brain’s inflammatory status [29]. Microglia control their 
CNS environment through multidirectional communication 
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with nearby neurons and other glial cells, such as astrocytes 
[30, 31]. Microglia play a critical role in modulating the 
BBB and neurovascular structures [32, 33] and were shown 
to actively contribute to establishing and altering the brain’s 
neuronal networks [17, 34–36]. Microglia notably partici-
pate in neuronal remodelling through a number of mecha-
nisms, including phagocytosis of whole or partial synapses 
[37–39] or selective nibbling of synaptic structures (tro-
gocytosis; [40]), altering the extracellular matrix [41], and 
physically separating pre- and post-synaptic elements in a 
process called synaptic stripping [42]. In addition to their 
key role in the removal of synapses, microglia remodel neu-
ronal networks through supporting of synapses and facili-
tating dendritic growth [43]. For example, Miyamoto and 
colleagues demonstrated that, in the early postnatal mouse 
(C57BL/6J) somatosensory cortex, microglia were directly 
responsible for inducing dendritic spine formation, while 
mice partially lacking microglia had significantly fewer 
functional synapses [44]. Moreover, microglia are key 
player in the synaptic pruning necessary for healthy brain 
development [45] and are important for the maintenance of 
synaptic integrity, activity and plasticity, as well as cogni-
tive abilities during adulthood [46]. Given their extensive 
roles throughout the CNS, microglia were further heavily 
implicated in cognitive aging [47, 48] and pathogenesis of 
age-related brain disorders [49–52].

Because of their role in modulating the neuroinflam-
matory environment and regulating neuronal networks, 
microglia are emerging as a promising pharmacological tar-
get for treating a number of CNS disorders [53] – including 
mood disorders [54], TBI [55], schizophrenia [56], and neu-
rodegenerative diseases [51]. Because microglial survival 
is reliant on colony stimulating factor 1 receptor (CSF1R), 
microglial depletion induced via pharmacology (CSF1R 
inhibitors, such as PLX3397) or genetic ablation (Csf1r-/-
), has been investigated as a potential therapeutic approach 
to treat a range of brain related disorders [57–59]. Over-
all, while therapeutic effects of temporary and/or partial 
microglial elimination have been reported in rodent mod-
els, either in vivo or in organotypic slice cultures, and this 
CSF1R inhibition is deemed an effective tool for microglial 
research, the practicality of microglial elimination remains 
uncertain in a clinical setting (reviewed by [60]). In addi-
tion to impairing microglial physiological functions, this 
approach is associated with difficulties such as BBB pas-
sage, off-target action (e.g., circulating and tissue-specific 
macrophages, oligodendrocyte precursor cells), resultant 
immune susceptibility, partial effectiveness, as well as evi-
dence that some distinct microglial states are unaffected by 
CSF1R inhibition [61–64]. Alternatively, numerous research 
studies found therapeutic efficacy of the tricyclic antibiotic, 
minocycline, across a number of disorders, due to its ability 

to normalize pro-inflammatory action and phagocytosis of 
microglia [65–70]. Therefore, it has been suggested that the 
use of pharmacological interventions to shape microglial 
activity could be a powerful method in discouraging nega-
tive effects of these cells, whilst promoting beneficial physi-
ological functions [26].

In this review, we aim to discuss examples from three 
main categories of emerging pharmacological treatments 
for CNS disorders: anesthetics, psychedelics, and dissocia-
tive agents, focusing on their interactions with microglia. 
While recent research into these drug-types has uncovered 
surprising efficacy in treating a range of CNS disorders, 
there are still many questions relating to the mechanisms 
by which these drugs induce such powerful effects; microg-
lia appear central in the mechanism, but this has remained 
largely unexplored. The current inquiry will describe both 
demonstrated and hypothesized pharmacodynamics involv-
ing microglia, and how those downstream effects lead to the 
neuroplasticity and neuronal regrowth associated with the 
therapeutic efficacy of these pharmacological agents. Ulti-
mately, we hope this review will aid in the identification 
and design of novel therapeutic targets and pharmacological 
options for the treatment of CNS disorders.

Anesthetic Agents

General anesthetics are hypnotic substances that are tradi-
tionally used to induce a state of unconsciousness, typically 
for patients undergoing invasive surgery [71–74]. Com-
monly used general anesthetics include sevoflurane and iso-
flurane, which are administered via inhalation, as well as 
propofol and thiopental, delivered intravenously (IV; [75, 
76]). In the current review, we will focus on propofol which 
represents the general anesthetic of choice for patients 
undergoing surgery and sedation, and for those in the inten-
sive care unit requiring mechanical ventilation [71, 72, 
74]. In fact, propofol has been the most frequently used IV 
anesthetic for the past three decades [71, 72, 74]. Propofol 
has a dose-dependent onset of action—typically less than a 
minute—and is a short-acting anesthetic: a typical induction 
dose exerts hypnotic effects for about 10 min, but prolonged 
or repeated administration causes accumulation in periph-
eral tissues and increases the duration of action [71, 74]. 
Importantly, general anesthetics are not only effective for 
the induction and maintenance of reduced consciousness; 
these medications can also exert anti-inflammatory and neu-
roprotective outcomes, yielding important implications for 
the treatment of a large variety of brain diseases and disor-
ders [77–82].
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effects, making it a highly versatile medication [71–73]. 
In virtue of being a general CNS depressant, propofol has 
shown promise in treating epilepsy, delirium tremens, and 
status asthmaticus—all conditions which are characterized 
by hyperactivity in the peripheral and central nervous sys-
tems [78, 82, 98–100]. By contrast, propofol’s neuroprotec-
tive properties are more surprising, and largely involve the 
various functions of microglia—ranging from microglial 
release of pro-inflammatory cytokines, to caspase activa-
tion and microglia-mediated apoptosis [84, 102, 106–108]. 
Thus, the next section will discuss propofol as an emerging 
treatment for TBI, cerebral ischemia, and neurodegenera-
tive diseases and emphasize a central role for microglia in 
its therapeutic efficacy.

Propofol, Brain Inflammation, and Microglia

The mechanistic pathways underlying propofol’s general 
anti-inflammatory and neuroprotective activities, irrespec-
tive of a specific disease context, have been more exten-
sively studied than for many other anesthetics [84, 107–112]. 
Various studies using primary mouse microglia1 exposed 
to lipopolysaccharide (LPS)2 have identified mechanisms 
by which propofol influences microglial pro-inflammatory 

1  It is important to highlight limitations of in vitro methodologies 
as their use is discussed throughout this review and those respective 
results must be approached with appropriate caution. Cell culture 
methodologies in neuroscience are a simplified representation of the 
in vivo brain that allow for specific, controlled investigation of sin-
gle culture or co-culture of neural cells. However, there are several 
drawbacks specific to primary microglial cell cultures and immortal-
ized cell lines, such as BV2 microglia. Numerous studies have dem-
onstrated that culturing primary microglia leads to changes in these 
cells affecting their molecular profile, morphology, ultrastructure, and 
possibly metabolism (reviewed by [113]). In vivo, microglia are highly 
respondent to and interwoven with their environment and therefore, 
growing them in a foreign and impoverished environment likely alters 
many of their cellular functions. There is also indication that age and 
sex are critical factors in culturing microglia particularly when used 
as a model of aging microglia [114]. Research findings investigating 
exclusively BV2 microglia (and other immortalized microglial cell 
lines) are not discussed in this review because of growing evidence 
suggesting their inherent insufficiencies in modeling primary and in 
vivo microglia [115–118].
2  LPS is a pathogen associated membrane pattern found on the cell 
wall of gram negative bacteria that is frequently used in primary cell 
cultures and rodent models of immune challenges because of its abil-
ity to induce a pro-inflammatory environment in the brain[119, 120]. 
Importantly, LPS is known to activate the pattern recognition receptor, 
Toll-like receptor (TLR)-4, expressed by microglia [121]. This acti-
vation of TLR4 mediates microglial reactivity via the nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) transcription 
factors, resulting in an increased production of pro-inflammatory cyto-
kines, altered morphological characteristics, and exacerbated phago-
cytic activity across animal models [122]. For these reasons, LPS is a 
functional model to test a pharmacological agent’s ability to impact the 
brain’s inflammatory environment, as discussed throughout the current 
review.

Mechanism of Action

The mechanisms by which general anesthetics exert their 
effects have yet to be fully elucidated, hence remaining an 
active area of research [74, 83]. However, it has been deter-
mined that, like most general anesthetics, propofol is an 
agonist for γ-aminobutyric acid type A (GABAA) receptors 
[72–74, 84]. While propofol’s action on GABAA is primar-
ily researched in the context of neuronal cells, GABAA is 
expressed throughout many cell types in the CNS, includ-
ing microglia [85] and astrocytes [86, 87]. In neuronal cells, 
propofol binds to postsynaptic GABAA receptors at the 
β-subunit, which causes an influx of chloride ions (Cl−) that 
hyperpolarize the postsynaptic dendrite [74, 83]. Further-
more, the effects of propofol are highly dose-dependent: at 
lower concentrations propofol potentiates GABA-induced 
Cl− influx, but at higher concentrations it directly activates 
the Cl− channel [83].

Critically, neuropharmacological research has identi-
fied propofol as an antagonist for the N-methyl-D-aspartate 
(NMDA) glutamate receptors (primarily investigated on 
neuronal cells), thereby acting as a CNS depressant through 
its influence on multiple neurotransmitter systems [88–92]. 
Specifically, propofol inhibits the influx of calcium ions 
(Ca2+) resulting from NMDA receptor activation—a mech-
anism hypothesized to mediate propofol’s neuroprotective 
effects [90]. As elucidated through the investigation of rat 
(Wistar) primary cortical and striatal neurons, propofol acts 
by increasing protein phosphatase 2 A activity, which in 
turn dephosphorylates the NR1 subunit on NMDA receptors 
[90]. NR1 subunit (de)phosphorylation is a primary mecha-
nism by which NMDA receptors are regulated, however, the 
details of this mechanism remain incompletely character-
ized [93, 94]. Kingston and colleagues demonstrated that R1 
dephosphorylation inhibits Ca2+ influx by measuring intra-
cellular Ca2+ levels in rat cortical neurons across treatments 
with various NMDA receptor ligands and propofol [90]. The 
hypnotic effects of propofol are more likely attributable to 
GABAA receptor action, and less so NMDA, as many stud-
ies have shown that inhibition or loss-of-function mutations 
in GABAA receptors are sufficient to reverse the propofol-
induced unconsciousness in rodent models [95–97].

Clinical Potential of Propofol

Beyond its use in general anesthesia, propofol demonstrates 
potential in treating a wide array of conditions, including 
TBI [77, 81], status epilepticus [82, 98], delirium tremens 
[78, 99], status asthmaticus [100], treatment resistant MDD 
[101], cerebral ischemia [79, 80, 102], Parkinson’s disease 
(PD; [103]), and AD [104, 105] – to name a few. Propofol 
exerts anxiolytic, analgesic, anticonvulsant, and amnesic 
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dendritic amputation via mechanical incision [77]. Criti-
cally, neuroprotective effects were only observed when 
hippocampal slices were exposed to propofol before or dur-
ing (but not after) dendritic amputation, and they became 
increasingly potent with higher propofol concentrations 
[77]. Of note, the neuroprotective influence of the anesthet-
ics was inhibited when hippocampal slices were exposed to 
GABAA receptor antagonists (e.g., picrotoxin, bicuculline) 
and were mimicked by the GABAA receptor agonist (musci-
mol), suggesting that propofol prevented neuronal death by 
agonizing GABAA receptors [77].

Using an adult rat (Sprague-Dawley; SD) model of lat-
eral fluid percussion TBI, it was found that propofol treat-
ment reduced neuronal death in the cerebral cortex, but not 
in the hippocampus nor in the thalamus [126]. This same 
study revealed that the neuroprotective effects of propo-
fol are largely mediated by microglia, as propofol reduced 
microglial expression of various cytotoxic compounds and 
enzymes, including inducible nitric oxide synthase (NOS), 
nitric oxide (NO), TNF-α, IL-1β, reactive oxygen species 
(ROS), and nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase [126]. The propofol treatment, com-
pared to isoflurane, caused a significant decrease in “bushy” 
or ameboid microglial states (large cell bodies and many 
short processes) that are typically associated with a pro-
inflammatory environment [126]. Overall, significantly less 
microglial-induced neurotoxicity was observed in the cor-
tex of propofol versus isoflurane treated rats [126]. Propofol 
was hypothesized to mediate this effect through upstream 
inhibition of NADPH oxidase [126], considering that this 
effector induces a cytotoxic and pro-inflammatory microg-
lial state [127, 128].

It is worth noting that while some studies have found sig-
nificant neuroprotective effects of propofol [77, 81, 124], 
other work rejects these conclusions [129] in the context of 
TBI. This may be due to the nuanced effects of propofol, as 
higher dosage (intended to model the higher end of clini-
cally utilized propofol concentration or exposure time) of 
the general anesthetic are cytotoxic to primary mouse (C57, 
Shanghai Model Organisms Center) microglia in both con-
trol and LPS-exposed conditions [110]. Thus, depending 
on concentration, propofol may not only attenuate LPS-
induced microglial activity, but indiscriminately increase 
apoptosis in microglia as well [110]. This cytotoxicity simi-
larly applies to neurons in neonatal mice, rats, and rhesus 
monkeys, as large concentrations of propofol significantly 
increased neuronal apoptosis, reduced spontaneous behav-
ioral activity, and impaired learning assessed using maze 
completion tasks [130–133] – thus, it has implications in 
the clinical application of high propofol concentrations for 
human anesthesia.

cytokine production. For example, propofol was found 
to reduce mRNA expression of genes associated with the 
NF-κB pathway (e.g., Ticam1, Myd88, Irf3, and Nfkb1) in 
LPS-exposed primary mouse (C57BL/6J) microglial cul-
ture—thereby emphasizing the importance of the NF-κB 
signaling pathway and its influence on microglia [110]. 
Another study measuring changes in protein expression in 
primary mouse (C57BL/6J) microglia found that propofol 
inhibits NF-κB signaling pathways by downregulating the 
multifunctional enzyme transglutaminase 2 (TGM2), while 
attenuating the downstream pro-inflammatory cytokines 
tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β 
and IL-6 [107]. Additionally, ectopic expression of TGM2 
or constitutively active IκB kinase complex β (IKK-β) 
impaired the anti-inflammatory activity of propofol—impli-
cating the role of TGM2 and IKK-β in influencing NF-κB 
signalling [107]. Finally, propofol can reduce microglial 
cytokine production by targeting the miR-221/222 and inter-
feron regulatory factor 2 (IRF2) axis: propofol was shown 
to downregulate miR-221 and miR-222 expression, which 
in turn downregulated IRF2 and reduced pro-inflammatory 
cytokine production in primary mouse (C57BL/6J) microg-
lia [111]. In cumulation, these studies show that propofol’s 
ability to lessen microglial pro-inflammatory cytokine pro-
duction results from many different cellular pathways par-
ticipating in its complex mechanism. While further research 
is warranted, these findings support microglia as an impor-
tant target of propofol that may contribute to many of the 
immunomodulatory effects of this widely used anesthetic.

Propofol and Traumatic Brain Injury

Propofol is an effective neuroprotective agent in mouse and 
rat models of mechanical TBI [77, 81, 123], and a random-
ized control trial in humans demonstrated that propofol 
treatment can result in better recovery and reduced mortal-
ity rates, relative to morphine, across moderate and severe 
TBI patients [124]. More recent clinical trials have found 
propofol to be significantly more effective than sevoflu-
rane in reversing cognitive deficits induced by oxidative 
stress [125]. With respect to animal models, propofol was 
found to significantly reduce cellular damage, relative to no 
treatment, in hippocampal brain slices from 6 to 8 day-old 
mice (C57BL/6, Charles River) that received acute, focal 
mechanical trauma [81]. Propofol was found to reduce 
“total injury” over the entire hippocampal slice as well as 
“secondary injury” surrounding the primary impact site, in 
a dose-dependent manner [81]. Another study compared the 
neuroprotective effects of propofol and thiopental, using 
whole cell patch-clamp and field recordings from granule 
cells in rat (Wistar) hippocampal slices, revealing that pro-
pofol induced greater survival rates in neurons subjected to 
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of cytokines which can disrupt the function of glutamate 
transporters [150, 151].

There is also evidence suggesting that propofol may 
exert its neuroprotective effects via caspases, enzymes 
which modulate a number of microglial activities in addi-
tion to cellular apoptosis [102, 104, 106]. Indeed, admin-
istration of a non-specific caspase inhibitor was found to 
reduce lesion size in a rat (adult, SD) model of striatal focal 
ischemia [102]. Furthermore, pre-treatment with an NMDA 
antagonist had a synergistic effect and was able to increase 
the efficacy of the caspase inhibitor treatment [102]. Thus, 
propofol may be acting via two pathways: by (1) prevent-
ing excitotoxicity via its antagonistic action on NMDA 
receptors [89–91] and (2) controlling microglia-mediated 
inflammation via caspase activity in rodent models [102, 
104, 106]. Indeed, the study by Schulz and colleagues sug-
gests that focal ischemia induces neuronal death via two 
steps: first by acute exposure to an excitotoxic environment, 
then by excessively activating caspases [102]. Caspase-3, 
-7, and -8 have demonstrated ability to regulate microglial-
induced apoptosis in neurons via NF-κB signaling across 
cell cultures and rodent models [106, 152, 153]. Caspase-1, 
in contrast, promotes the maturation of pro-inflammatory 
cytokines released from microglia, such as IL-1β, IL-18 and 
IL-33, demonstrated also in cell cultures and rodent mod-
els [154–156]. Thus, global caspase inhibition is widely 
hypothesized to promote a neuroprotective environment 
by impairing microglia-induced neurotoxicity and chronic 
inflammation [106, 154, 156].

Finally, rat (adult, SD) models of cerebral ischemic 
injury and reperfusion suggest that propofol has an impor-
tant regulatory influence over connexin 43 (CX43) expres-
sion in microglia [157]—CX43 facilitates intercellular 
communication via gap junction formation [158]. Notably, 
two models were used: an in vivo middle cerebral artery 
occlusion model to obtain primary microglia, and an in vitro 
model in which primary rat (SD) microglia were cultured 
under glucose free and hypoxic conditions, then reoxy-
genated [157]. This study found increased microglial pro-
duction of pro-inflammatory cytokines (IL-1β, IL-6, and 
TNF-α), microglial upregulation of CX43, increased neuro-
nal expression of Cav3.2, and reduced neuronal expression 
of microtubule associated protein 2 (MAP2), which caused 
more frequent neuronal apoptosis [157]. Notably, CX43 
upregulation after ischemia is hypothesized to facilitate the 
spread of cytotoxic molecules (e.g., apoptotic factors, TNF-
α, IL-1β), cellular debris, and dying cells into surrounding 
healthy tissue, thereby exacerbating cellular damage via gap 
junction signalling [159–161]. Therefore, an upregulation 
of CX43 in microglia may worsen brain inflammation by 
means of spreading pro-inflammatory and neurotoxic sig-
nals [162, 163]. Furthermore, excessive Ca2+ influx from 

Propofol and Cerebral Ischemia

With respect to ischemic stroke, a large amount of evidence 
suggests that propofol can exert neuroprotective effects 
[79, 80, 134–136]. For instance, when ischemic strokes are 
induced in the striatum of conscious rats (adult, Wistar) via 
local vasoconstriction endothelin injection, propofol sig-
nificantly reduced infarct size relative to intralipid vehicle 
control [135]. In this experiment, propofol was effective 
at reducing brain damage when administered immediately 
or one hour after the stroke occurred, thus providing evi-
dence that both concurrent and delayed propofol treatment 
is neuroprotective [135]. At a propofol dose of 25 mg/kg/h 
administered immediately or delayed (one hour) after injury 
(endothelin injection), infarct volume was significantly 
reduced compared to intralipid controls [135]. The benefits 
of propofol treatment are not limited to focal injuries, as a 
rat (adult, SD) model of global cerebral ischemia-reperfu-
sion injury revealed that propofol significantly reduces the 
brain concentration of malondialdehyde (an index of oxi-
dative stress) compared to rats receiving a saline solution 
[136].

Mechanistically, evidence suggests that the neuroprotec-
tive effects and reduced infarct size in rat (adult, Wistar) 
hippocampi result from propofol’s ability to reduce mito-
chondrial swelling [80], which can cause the organelle to 
rupture, thereby releasing proapoptotic molecules (e.g., 
cytochrome C) into the cytoplasm [137, 138]. Furthermore, 
propofol appears to protect against excitotoxicity associ-
ated with cerebral ischemia, as stroke causes excessive glu-
tamate release and dysregulation of glutamate transporters 
[139]. This implicates the involvement of neurons, astro-
cytes, oligodendrocytes, microglia and/or endothelial cells 
forming the BBB, since all these cell types can express glu-
tamate transporters [79, 140–142]. Microglia express the 
glutamate transporter-1 (GLT1) and glutamate–aspartate 
transporter (GLAST), increasing their protein expression 
after brain injury, as notably shown in post-mortem immu-
nohistochemistry studies of humans diagnosed with focal 
cerebral ischemia [143–145]. However, the application of 
3-methyl-glutamate, an inhibitor of GLT1, did not have a 
measurable effect of propofol’s neuroprotective ability in 
a model of ischemia using rat (Wistar) cortical neuron-
glia co-cultures, suggesting that propofol acts primarily on 
glutamate transporters other than GLT1 [79]. Furthermore, 
as mentioned, there is extensive evidence suggesting that 
propofol reduces microglial release of pro-inflammatory 
cytokines [107, 110–112] and that these cytokines supress 
the expression and proper functioning of glutamate trans-
porters [146–149]. Thus, propofol may influence microglia 
directly through GLAST or indirectly via microglial release 
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PD patients relative to age- and sex-matched healthy con-
trols [106]. Caspases associated with inflammation (e.g., 
caspase-1) may also contribute to propofol’s effects on PD, 
considering that rat (Wistar) models of PD were found to 
express 16-fold greater IL-1β mRNA levels in the sub-
stantia nigra, relative to control rats treated with a vehicle 
[103]. Indeed, PD may be especially susceptible to microg-
lia-related treatments, as the substantia nigra has one the 
highest concentrations of microglia among the mammalian 
brain [167, 168]. Although more research is needed, pro-
pofol appears to be a promising avenue for the treatment 
of age-related disorders, particularly through its impact on 
microglia.

Introduction to Psychedelics

Psychedelics are agents that substantially modulate sensory 
perceptions, mood, and cognition [169, 170]. For millennia, 
humans across diverse geographical and cultural landscapes 
have made use of psychedelics for ceremonial, medicinal, 
and recreational purposes [171]. Psychedelics can cause 
altered visual and auditory perceptions, as well as tempo-
ral and spatial awareness, hallucinations, and increases in 
positive affect [172, 173]. Early clinical trials have high-
lighted clinical potential for psychedelics in the treatment of 
depression, anxiety, and other psychiatric disorders. Despite 
promising initial results, political pressures and shifting cul-
tural values in the mid-20th century prompted the illegaliza-
tion of psychedelic drugs and a cessation of all associated 
research in Canada and the United States [170]. Recently, 
however, psychedelics research has regained momentum, 
culminating in numerous clinical trials yielding promising 
results for a range of psychiatric conditions [171, 174].

Psychedelics are traditionally grouped into three broad 
classes [173, 175]. The tryptamines include psilocybin and 
its active metabolite psilocin, N,N-dimethyltryptamine 
(DMT) and its derivative 5-methoxy-DMT (5-MeO-DMT), 
as well as ibogaine. The second class, called ergolines, 
comprise lysergic acid diethylamide (LSD) and its deriva-
tives. The third group, psychedelic phenylethylamines, 
are derivatives of phenylethylamine or amphetamine 
(α-methylphenylethylamine) and encompass naturally 
occurring mescaline, as well as synthetic 2,5-dimethoxy-
4-methylamphetamine derivatives (DOx compounds), 2C 
compounds, and 3,4-methylenedioxymethamphetamine 
(MDMA). Traditionally, classical psychedelics such as psi-
locybin (through its active metabolite psilocin), DMT, LSD, 
mescaline and their derivatives are drugs exerting their pri-
mary effects through agonism of the serotonin neurotrans-
mitter receptor 5-HT2A considered to be mainly localized on 
neuronal cells [173, 175]. Compounds such as ibogaine and 

CaV3.2 channels was shown to contribute to ischemic cyto-
toxicity by damaging mitochondria [164]. Lastly, MAP2 is 
an index of synaptic plasticity, as the protein enhances the 
synthesis of microtubules and is concentrated in dendritic 
trees [165, 166]. Critically, propofol-treated rats, relative to 
untreated controls, showed decreased infarct volume and 
neuronal apoptosis [157]. These results were accompanied 
by a reduction in pro-inflammatory cytokine levels, CX43 
expression, CX43 phosphorylation, and CaV3.2 levels, 
while MAP2 expression was increased [157]. Thus, propo-
fol appears to reduce the spread of proapoptotic signals and 
cellular debris in tissue surrounding the primary infarct site 
(by downregulating CX43), lessen the severity of excitotox-
icity (by reducing the number of CaV3.2 channels), and it 
promotes synaptic plasticity (by increasing MAP2 expres-
sion in neurons) largely via interactions with microglia.

Propofol and Neurodegenerative Diseases

AD, defined by pathological accumulation of extracel-
lular amyloid-β plaques and intracellular neurofibrillary 
tangles, and PD, characterized by atrophy of dopaminergic 
pathways essential for regulating movement, are common 
neurodegenerative diseases in which microglia have been 
extensively investigated as a potential therapeutic target. 
The propofol-caspase-microglial pathways mentioned ear-
lier have implications for AD and PD treatment [103, 104, 
106, 107]. For example, propofol administration was found 
to improve performance on the Morris water maze task—
a common behavioral assessment of spatial navigation—in 
aged wild type mice (C57BL/6J) as well as in transgenic 
mouse models of AD pathology (B6.Cg-Tg (APPswe, 
PSEN1dE9) 85Dbo/J; [104]). Furthermore, both aged 
wild-type and transgenic mice showed significantly lower 
levels of caspase-3 and -9 in both cortical and hippocam-
pal tissue, relative to saline-treated controls [104]. Mecha-
nistically, it is hypothesized that propofol protects against 
mitochondrial dysfunction in cerebral ischemia [80, 104, 
164]. Further evidence supporting the previously described 
hypothesis that propofol acts upon microglia via inhibition 
of the IKK-β/NF-κB pathways comes from findings that 
microglial caspase-3 and -8 are significantly more active in 
the post-mortem frontal cortex of humans with AD, relative 
to matched controls [106]. These findings provide evidence 
for a mechanistic link between propofol’s action on GABAA 
receptors and microglial/caspase pathways perhaps through 
direct agonism of microglial GABA receptors (see more in 
Sect. 5.1.4.).

Further support comes from studies of post-mortem brain 
samples showing that caspase-3 and -8 are significantly 
more active, as indexed via double immunolabelling and 
confocal imaging analysis, in the ventral mesencephalon of 
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mGluR receptors [185, 191–193]. Glutamate-mediated 
AMPA signalling was shown to augment the release of 
brain derived neurotrophic factor (BDNF; [194]). Likewise, 
BDNF release, measured by serum BDNF levels, is acutely 
and persistently increased in response to a single administra-
tion of LSD in human subjects [195, 196]. As impairments 
in BDNF-mediated neurogenesis are thought to underlie the 
pathology of depression and anxiety [197–200], psychedel-
ics may thus promote adult neurogenesis and beneficial cir-
cuit rewiring in patients with these disorders (see more on 
microglial BDNF in Sect. 5.1.1.; [182, 184]). In line with 
this, DMT, psilocin, 2,5-dimethoxy-4-iodoampethamine 
(DOI), MDMA, LSD, and noribogaine were recently shown 
to increase neurite growth and dendritic arbour complexity 
in cultured rat (SD) cortical neurons through a mechanism 
involving 5-HT2A receptor stimulation, TrkB signalling, 
and AMPA activation [201, 202]. Further testing with DMT 
demonstrated its potential to increase dendritic spine growth 
in the prefrontal cortex (PFC) of adult rats [201]. In addi-
tion to glutamate-mediated neurogenesis, attenuation of 
inflammation and increased synaptic plasticity allowing for 
rewiring of pathological circuitry are potential mechanisms 
underlying the benefits of psychedelics in anxiety and mood 
disorders, which will be discussed further below in the con-
text of other psychiatric conditions.

Addiction and Alcohol Use Disorder

Alcohol use disorder (AUD), as defined by diagnostic 
statistics manual-5 (DSM-5) criteria, carries a lifetime 
prevalence of nearly 30% [203]. Psychotherapeutic and 
behavioral approaches to its treatment can show benefits 
in a subset of patients, but pharmacological options for 
AUD are limited [204]. Psychedelics represent a novel and 
promising approach for the treatment of alcohol-associated 
addiction. A meta-analysis of clinical trials comprising 
a total of 536 subjects demonstrated a significant benefit 
of LSD in reducing alcohol misuse in patients with AUD 
[205]. Observational evidence also indicates an association 
of LSD and other psychedelics in promoting the cessation of 
alcohol consumption by alcohol-dependent patients [206], 
while clinical trials have similarly shown the capacities of 
psilocybin and MDMA to enhance the outcomes of psycho-
therapy in treating AUD [207, 208].

AUD and other substance use disorders are characterized 
by pathological remodelling of the reward circuit, which is 
strongly influenced by nearby microglia [209–211], through 
positive and negative reinforcement of behaviors [204]. 
Neural circuit remodelling in response to positive stimuli 
involves neuroplastic changes in neurotransmitters, such 
as serotonin and dopamine, in the major reward pathways 
of the brain, comprising striatum, ventral tegmental area 

MDMA also stimulate 5-HT2A, but exert pleiotropic effects 
through other receptor interactions and are often classified 
separately [173, 176–178]. Although some evidence indi-
cates that MDMA may not be hallucinogenic [175], this 
substance will be discussed as a psychedelic for the pur-
poses of this Review, particularly in light of the large body 
of evidence highlighting its interactions with the central and 
peripheral immune systems.

Clinical Potential of Psychedelics

Anxiety and Mood Disorders

In recent years, psychedelics have re-emerged as promising 
agents for the treatment of conditions ranging from mood 
disorders to neurodegenerative diseases. A growing body 
of preclinical research has culminated in two landmark 
clinical trials showing a significant benefit of psilocybin 
in terminal cancer patients with related depression or anxi-
ety. Single or multiple doses of psilocybin were efficient in 
improving clinical depression and anxiety scores, as well 
as subjective quality of life ratings, with effects persisting 
for at least six months post-treatment [179, 180]. Psyche-
delics have continued to show clinical benefits in modern 
randomized controlled trials, with a recent meta-analysis of 
12 clinical trials indicating that treatment with psilocybin, 
LSD or the plant-derived psychedelic brew ayahuasca can 
significantly reduce negative mood symptoms in clinically 
depressed patients, and, remarkably, in healthy volunteers 
[181]. Importantly, psychedelics tend to require fewer doses 
than traditional antidepressants such as SSRIs, even dem-
onstrating efficacy after a single administration, and their 
benefits often manifest more rapidly and persist longer post-
treatment [171].

The neurobiological processes underlying the success of 
psychedelics in treating mood and anxiety disorders remain 
a topic of intense investigation [177, 182–184]. Animal and 
human studies have provided insights into some mecha-
nisms underlying the therapeutic actions of psychedelics. 
Classical psychedelics activate serotonin receptors on neu-
rons throughout all regions of the brain [185]. Serotonin 
receptors are also expressed on microglia [186–189]; how-
ever, the impact of psychedelics on microglia has not yet 
been directly investigated – but could be central to therapeu-
tic efficacy (see more on this in Sect. 5.1.). 5-HT2A receptor 
activation in layer V cortical pyramidal neurons is thought 
to mediate the hallucinogenic effects of psychedelics [185, 
190]. The activation of 5-HT2A in post-synaptic neurons 
increases downstream glutamate release, raising glutamate 
levels in the brain and leading to increased excitatory neu-
ronal activity through activation of α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA), NMDA and 

1 3



Neurochemical Research

studies, this provides evidence that the cellular and molec-
ular activities of psychedelics may be sufficient to induce 
beneficial therapeutic effects independently of their halluci-
nogenic effects (reviewed by [219]).

MDMA and PTSD

An estimated 1 in 15 people will develop in their lifetime 
post-traumatic stress disorder (PTSD), a condition charac-
terized by intrusive re-experiencing of distressing memo-
ries secondary to a significant traumatic life event [220]. 
Symptoms include avoidance behavior, negative affect, and 
increased reactivity/arousal [221]. Although a substantial 
proportion of the population is exposed to traumatic expe-
riences during their lifetime, many individuals cope effec-
tively with trauma and display resilience to the effects of 
stress, and thus only a subset develop PTSD [203]. PTSD 
occurs in association with impaired fear extinction and a 
decreased ability to distinguish danger from neutral stimuli 
[222, 223]. Neurobiologically, PTSD pathogenesis is medi-
ated by synaptic loss among brain regions such as the PFC 
and hippocampus, increased synaptic density in the nucleus 
accumbens, and alterations in glutamate and monoamine 
neurotransmission [222, 224–227]. Microglia are emerging 
as a therapeutic target in the context of PTSD as they play 
an important role in modulating the synaptic loss observed 
in humans suffering from and animal models of PTSD 
[228–235]. Interestingly, classical anti-depressants, such as 
SSRIs, also demonstrate clinical benefits in PTSD [236].

The atypical psychedelic MDMA, which is often clas-
sified as distinct from the classical psychedelics due to its 
pleiotropic receptor interactions, affinity for 5-HT2A recep-
tors, and action upon multiple alternative pathways, has 
generated excitement in the medical community following 
remarkable successes in clinical trials for PTSD. Recently, 
in a Phase III trial of 90 PTSD patients, nine MDMA-
assisted psychotherapy sessions were found to significantly 
reduce clinical symptom scores, with benefits persisting at 
least two months beyond the treatment period [237]. Earlier 
trials further support the use of MDMA in PTSD psycho-
therapy, with meta-analyses revealing consistent benefits 
such as reducing clinical symptoms [238, 239].

MDMA and its active metabolites bind to 5-HT2B, 
5-HT2C receptors, trace amino acid receptors (TAARs), 
adrenergic receptors, and competitively inhibit synaptic 
monoamine reuptake through their interactions with neu-
ronal dopamine, norepinephrine and serotonin transporters 
[176, 178]. Increased synaptic serotonin concentrations led 
to downstream increases in glutamate-mediated excitatory 
neurotransmission, which, as observed with the classi-
cal psychedelics, may result in a neuroplastic rewiring of 
neuronal connections ([201] see Advances in Microglial 

(VTA), and nucleus accumbens [212]. Meanwhile, nega-
tive reinforcement mechanisms involve hyperactivation 
of stress response axes, including changes in corticotropin 
release [212]. Moreover, long-term alcohol administration 
in mice (C57BL/6, Guangdong Provincial Laboratory Ani-
mal Center; GPLAC) was shown to reduce hippocampal 
dendritic spine density and synaptic protein expression, 
while increasing microglia-mediated synaptic elimination 
[213].

The putative mechanisms for the antidepressant actions of 
psychedelics may also contribute to their potential in treat-
ing addiction. As discussed, glutamate-mediated neuroplas-
ticity may play a key role in rewiring detrimental functional 
connections within and between specific brain regions while 
promoting beneficial connections [177, 182]. For instance, 
systemic administration of the psychedelic ibogaine in an 
ethanol-addiction model in rats (Long-Evans) increased 
glial cell-line-derived neurotrophic factor (GDNF) expres-
sion in the VTA, correlating with a decreased alcohol pref-
erence in two-bottle choice and alcohol self-administration 
tests [214]. Similarly, psilocybin, LSD and other psychedel-
ics exert neurotrophic effects [201, 202, 215], and thus may 
act similarly in the context of addiction-reward circuitry. It 
was also proposed, based on evidence from functional mag-
netic resonance imaging (fMRI) studies in humans, that psy-
chedelics induce a state of increased brain entropy and relax 
rigidly held pre-existing beliefs and associated neural con-
nectivity, allowing the brain to revise and reform thoughts, 
beliefs and behavioral patterns [183, 216]. Notably, patients 
attribute alcohol use cessation to the subjective psychedelic 
experience, describing life-changing realizations and highly 
meaningful cognitive experiences during psychedelic treat-
ment [206], suggesting that increased neuroplasticity in 
acute psychedelic treatment may promote adaptive rewiring 
of the brain pathological circuitry through active cognitive 
processes [183, 184].

Recent neurochemical research has led to the develop-
ment of non-hallucinogenic analogues of classical psyche-
delics that demonstrate efficacy in treating animal models 
of addiction and mood disorders [217, 218]. Specifically, 
tabernanthalog (TBG), an analogue of the psychedelic 
ibogaine, does not induce the head-twitch response com-
monly utilized method to indicate hallucinogenic effects 
in rodents. Despite this, TBG demonstrated anti-addictive 
outcomes by reducing heroin and alcohol seeking behavior 
and reduced depressive-like and anxiety-like behaviors in a 
chronic unpredictable stress mouse (8 week-old, C57BL/6J) 
model [217]. These therapeutic effects were correlated with 
a recovery of structural plasticity and dendritic spine forma-
tion in the frontal and somatosensory cortices of these mice, 
particularly through agonism of 5-HT2A receptors [218]. 
While these analogues have not yet been tested in clinical 
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promote the differentiation of pro-inflammatory T-cell sub-
sets [253]. These compounds also inhibited production of 
the pro-inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-
α, while increasing tolerogenic IL-10 [253]. Similarly, DMT 
decreased pro-inflammatory cytokine expression and pro-
moted expression of IL-10 and BDNF, as well as increased 
neuronal and astrocyte survival, in rodent models of isch-
emic stroke [249, 251]. Further research has demonstrated 
that DMT enhances the survival of monocyte-derived mac-
rophages under hypoxic conditions through S1R-medi-
ated induction of hypoxia-induced factor (HIF)-1α [250]. 
Increased resistance to hypoxia in microglia could be advan-
tageous in certain pathologies, such as ischemic stroke and 
TBI, where a lack of brain tissue perfusion is a major cause 
of cell death. However, it should be noted that HIF-1α is a 
key inducer of glycolytic metabolism, which is also linked 
to pro-inflammatory microglial function [254–256]. Thus, 
further research is necessary to determine whether DMT 
modulates microglia beneficially across various disease 
contexts.

Pro-inflammatory Effects of MDMA

Unlike classical psychedelics, MDMA, as well as other 
synthetic phenylethylamines and higher doses of ibogaine, 
are typically associated with inflammation and immune cell 
reactivity [178]. Although MDMA is typically well-toler-
ated in clinical trials, significant neurotoxicity can result 
when it is used in unsupervised settings or with uncon-
trolled dosing [208, 257, 258]. Microglia are important 
mediators of the pro-inflammatory and neurotoxic effects 
of MDMA [259], with microglial reactivity, as quantified 
by isolectin-B4 immunostaining, proposed to be a specific 
marker of amphetamine neurotoxicity in microglia [260]. 
In MDMA-treated rats, microglia were observed to become 
more abundant in the hippocampus, striatum, hypothalamus, 
and parietal/frontal cortices, adopting a highly phagocytic 
state with amoeboid morphology [257, 261, 262]. Treatment 
with minocycline, a tetracycline antibiotic that normalizes 
microglia-mediated inflammation [65], attenuated the neu-
rotoxic effects of MDMA in adult Dark Agouti rats [261] 
and Balb/cAnNCrICrIj mice [262]. Although mechanistic 
studies are scarce, current evidence suggests that MDMA-
induced hyperthermia contributes to microglial-associated 
neurotoxicity [263, 264]. Furthermore, genetic deletion of 
the monomeric GTPase Rhes increased microglial reactivity 
(measured by a significant increase in CD11b immunoposi-
tivity) in the mouse (C57BL/6, source unspecified) sub-
stantia nigra pars compacta in an age- and sex-dependent 
manner, suggesting a possible role for G-protein signalling 
in suppressing MDMA-induced microglial functional trans-
formation [263].

Research Methodology section). In rodents, MDMA ablates 
fear conditioning by promoting extinction of learned fear 
reactions to conditioned stimuli [240, 241]. Recent research 
suggests that this reopens the critical period of social reward 
learning, enhancing sensitivity to social reward cues via an 
oxytocin-dependent mechanism [242]. These mechanisms 
may account for the observed increase in the efficacy of 
psychotherapy when combined with MDMA treatment, 
as enhancing social learning could allow to strengthen the 
essential therapeutic alliance between psychotherapist and 
patient [242].

Psychedelics, Inflammation, and Microglia

Anti-inflammatory Effects of Classical Psychedelics

Classical psychedelics have been largely reported to exert 
anti-inflammatory effects [169, 243, 244]. One impor-
tant mechanism for this phenomenon is linked to 5-HT2A 
receptor activation. Although serotonin is well-established 
as a key mediator of peripheral inflammation [169, 245] 
and stimulates pro-inflammatory cytokine production in 
human monocytes [246], psychedelics may promote anti-
inflammatory effects by stabilizing the 5-HT2A receptor in 
an alternative conformation that mediates a preferential 
recruitment of anti-inflammatory downstream signalling 
molecules [169]. Stimulation of smooth muscle cells with 
the psychedelics (R)-DOI, 2 C-BCB, LSD and lysergic 
acid 2,4-dimethylzetidide decreased TNF-α production and 
expression of the leukocyte adhesion molecules ICAM and 
VCAM [247], which could have implications for preventing 
loss of BBB integrity, immune cell infiltration, and inflam-
mation. Although more mechanistic evidence is needed, 
modulating the CNS inflammatory environment through 
serotonergic receptor ligands likely involves direct binding 
to microglial serotonergic receptors or indirectly modulat-
ing microglial activity and inflammatory signals expression.

The direct effects of classical psychedelics on microglia 
remain largely undetermined. However, existing literature 
suggests an anti-inflammatory effect, in line with research 
on peripheral immune cells [248]. Psychedelics addition-
ally activate the Sigma-1 receptor (S1R), an endoplas-
mic reticulum-associated molecular chaperone expressed 
on microglia that controls mitochondrial ATP synthesis 
through the regulation of calcium signalling [249–251]. The 
tryptamines DMT and 5-MeO-DMT are endogenous ago-
nists of S1R [252] that were shown to modulate microglial 
function in various disease contexts (for further discussion 
of S1R, see Sect. 5.1.2.). In cultured human monocyte-
derived macrophages, widely used to model some aspects 
of microglial biology in vitro, DMT or 5-MeO-DMT 
decreased the ability of monocyte-derived macrophages to 
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definitive judgement has been made yet in regards to its 
long-term clinical utility as an chronic antidepressant [278, 
279].

Ketamine’s Mechanism of Action

The neuropharmacological action of ketamine is quite 
extensive: ketamine is reported to act on the serotonergic, 
dopaminergic, opioid, cholinergic, and GABA systems in 
the brain (reviewed by [280]). Ketamine pharmacodynamics 
largely resemble its precursor phencyclidine, but its quanti-
tative anaesthetic action is shorter in duration and presents 
reduced psychotomimetic effects (reviewed by [279]). This 
could be attributed to its pharmacokinetic properties, such 
as rapid dissolution in hydrophobic and hydrophilic solu-
tions, low protein binding, and quick transfer across the 
BBB (reviewed by [281]). Importantly, the racemic mixture 
(R and S enantiomers) of ketamine has been identified in 
several studies as a key factor in determining its pharmaco-
logical activities (reviewed by [278]). The S-enantiomer of 
ketamine (esketamine) is largely reported to be more potent 
at the NMDA receptor binding site compared to phencycli-
dine [282, 283]. It is also known to possess stronger analge-
sic and anaesthetic effects relative to the R-ketamine [284]. 
Although the precise molecular and cellular mechanisms 
underlying anti-depressant and neuroprotective effects of 
ketamine’s enantiomers still remain unclear, R-ketamine 
has currently demonstrated a superior antidepressant effect 
with a more tolerable adverse profile than esketamine [285, 
286].

Ketamine’s primary mechanism of action in the CNS 
is as a non-competitive antagonist of the phencyclidine 
binding site inside the Ca2+ channel of NMDA receptors; 
these NMDA receptors are widely distributed at GABAer-
gic interneurons present in spinal, thalamic, and cortical 
sub-fields [287]. This NMDA receptor blockade results in 
downstream activation of other glutamate receptors includ-
ing AMPA receptors [269, 276]. Given that GABA binding 
to glutamatergic pyramidal neurons decreases glutamate 
release, the antidepressant effects of ketamine are postulated 
to result from inhibition of the NMDA receptor co-localized 
on GABAergic neurons [287, 288], which leads to disinhi-
bition of glutamate release and increased subsequent AMPA 
receptor activation. AMPA receptor activation subsequently 
mediates the induction of other signaling pathways, nota-
bly through the mammalian target of rapamycin (mTOR), a 
key molecular target for Ca2+/calmodulin-dependent kinase 
eukaryotic elongation factor 2 (EEF2) kinase, extracellular 
signal regulated kinase (ERK) and Akt [289–293]. These 
joint activations have been linked to altered structural plas-
ticity via increases in the expression of synaptosome pro-
teins, neurotrophic factors, binding elements, and increased 

Overall, microglia appear to act as a double-edged sword 
in the context of psychedelic therapies. Although microg-
lia mediate key beneficial effects of psychedelics on neu-
roplasticity, neurogenesis, and inflammation – all of which 
may yield clinical benefits for patients with neuropsychi-
atric disorders among others – microglia can also exacer-
bate inflammation and neurotoxicity depending on context. 
Thus, further research is necessary to unravel the molecular 
interactions of psychedelics and microglia, as required to 
develop optimized immune-informed strategies for novel 
psychedelic therapies.

Introduction to Ketamine

Ketamine is a psychoactive derivative of phencyclidine, 
synthesized in 1962 by Calvin Stevens [173, 176–178]. 
Ketamine differs itself from both psychedelics and anesthet-
ics because of its ability to induce a ‘dissociative’ experi-
ence and its distinctive and broad mechanism of action in 
the CNS [173, 178]. When given at subanesthetic dose in 
humans, ketamine induces a pronounced alteration in state 
of mind consisting of hallucinatory state, derealization, 
depersonalization, synesthesia, altered proprioception, dis-
organized speech, and blunted affect, comprising a constel-
lation of behavioral phenotypes that have been proposed to 
resemble schizophrenic psychosis [265–267]. The scientific 
and broad medical study of ketamine, and other related aryl-
cyclohexylamine dissociative agents, gradually emanated 
from the initial discovery of ketamine’s ability to suppress 
sensory responses of central neurons through blockade of 
NMDA receptors in 1983 [268, 269]. Overall, ketamine 
is a unique and promising dissociative, anaesthetic agent 
implemented in clinical and research contexts because of its 
diverse abilities in anesthesia, pain management, and psy-
chiatric disorders (reviewed by [270]).

The psychotherapeutic applications of ketamine in clini-
cal practice have since been investigated for a large number 
of psychiatric and non-psychiatric conditions (e.g., depres-
sion [271], chronic pain [272], insomnia [273], PTSD [274], 
asthma [275]), either as a monotherapy or in combination 
with other medications. To date, according to ClinicalTrials.
gov, over 500 registered clinical trials have been completed 
that list ketamine as a drug intervention for the treatment 
of a broad range of disorders. However, the safety of a pro-
longed therapeutic usage of ketamine remains inconclusive; 
in fact, an increasing body of evidence reveals an emer-
gence of memory impairment, depressive tendency, cysti-
tis, gastritis, and liver dysfunction following chronic usage 
in humans (reviewed by [276]). Additionally, ketamine is 
a highly addictive and regulated substance – thus, posing 
a risk of substance abuse (reviewed by [277]). Thus, no 
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cortex in an adult rat (SD) model of PTSD [305]. On the 
other hand, Xie and colleagues found that a single-dose 
of ketamine attenuates depressive-like behaviors in a rat 
(6–8 week-old, SD) model of neuropathic pain as well as 
exerts immunomodulatory effects by decreasing serum lev-
els IL-1β and IL-6 in depressive-like animals [306]. Yang 
and colleagues also found that ketamine reduced IL-1β 
and IL-6 levels, specifically in the PFC and hippocampus 
of mature rats (Wistar) and improved performance on the 
forced swim test [307]. Ketamine protected against LPS-
induced increases in TNF-α, IL-1β, and nitrite production 
in primary rat (Wistar) microglia [308] and TNF-α, but not 
nitrite, production in primary rat (Wistar) mixed glial cell 
culture [309]. Administering ketamine (and two active ket-
amine metabolites) to HMC3 (human microglial cell line) 
cells identified microglial signal transducer and activation 
of transcription 3 (STAT3) as an important factor down-
regulated in ketamine’s immunomodulatory effects [310]. 
STAT3 is known to regulate inflammatory response within 
microglia, particularly, as an important transcription media-
tor for pro-inflammatory cytokines, such as TNF-α, IL-6, 
and IL-1β [311–313]. STAT3 is largely inflammatory in 
the brain parenchyma and has demonstrated interactions 
with EEF2, a molecule critical to ketamine’s anti-depres-
sant effects [314]. Further support for ketamine’s ability 
to modulate the brain’s inflammatory environment is from 
Wang and colleagues who demonstrated that esketamine 
reduced pro-inflammatory cytokine (TNF-α and IL-6) lev-
els in serum and medial PFC (mPFC) of a mouse (7-week-
old, C57BL/6, GPLAC) model of post-operative depression 
[315]. Esketamine also rescued post-operation associated 
depressive-like behaviors and NF-κB over-expression in 
the mPFC [315]. Similar results were found in a chronic 
restraint stress mouse (mature, Kunming) model: ketamine 
alleviated increased brain and serum levels of TNF-α, IL-1β, 
and IL-6 as well as rescued depressive-like behavior, partic-
ularly through down-regulation of the TLR4/p38 pathway 
[316]. There is also evidence that anti-depressant effects of 
ketamine are dependent on microglia, as partial depletion 
of microglia in the PFC via a CSF1R inhibitor (PLX3397) 
also reversed the observed anti-depressant effects of R-ket-
amine in a chronic social defeat stress (CSDS) mouse (8 
week-old, C57BL/6, Japan SLC inc.) model of depression 
[317]. Specifically, Zhang and colleagues revealed thera-
peutic efficacy of R-ketamine was dependent on microglial 
transforming growth factor (TGF)-1β (and its receptors) in 
the same mouse model [317]. Lastly, when murine TNF-α 
was injected (via tail-vein) into adult mice (C57BL/6J), ket-
amine administration successfully alleviated the increased 
motor dysfunction, decreased necroptosis of HT-22 hip-
pocampal neurons, and reduced quantity of IBA1/CD68 

dendritic spine density through the disinhibition of BDNF 
release [201, 289, 290, 294, 295]. Although less mechanistic 
information is available for these pathways, the secondary 
mechanisms occur through ketamine’s action on norepi-
nephrine transporter, mu (µ) opioid receptors, serotonin 
transporter, and S1Rs [269]. Important to this review, ket-
amine’s antidepressant effects are hypothesized to work in 
combination of NDMA receptor antagonist activity and S1R 
agonism (more on S1Rs in Sect. 5.1.2.; [296]).

Ketamine and Microglia

In recent years, research findings have indicated a crossroad 
between the anti-inflammatory mechanisms of ketamine 
and its rapid antidepressant effects [289, 297–299]. There 
is evidence that ketamine involves modulation of both the 
peripheral and central inflammatory milieu through inter-
actions with microglia [299, 300]. Quinolinic acid (QA) 
is a metabolite of the kynurenine pathway (KP) of trypto-
phan metabolism primarily produced by microglia that has 
largely pro-inflammatory effects throughout the CNS via its 
agonist action on NMDA receptors [301] – mechanistically 
opposite to ketamine. Experimental and clinical findings 
indicated that subanaesthetic doses of ketamine induce a 
shift in the microglial KP of tryptophan metabolism by sup-
pressing QA and increasing kynurenic acid (KA) production 
[302]. In fact, Verdonk and colleagues found that ketamine 
decreases the microglial production of plasmatic QA rela-
tive to LPS-treated mice (9–11 week-old, C57BL/BJRj), 
contributing to ketamine’s antidepressant effect (more 
details on the KP metabolism in Sect. 5.1.5. [302, 303]). In 
another study, LPS treatment led to increased brain levels of 
QA levels and associated depressive-like behaviors in mice 
(12 week-old C57BL/6J), while ketamine attenuated behav-
ioral impacts of LPS driven through an increase in AMPA 
signaling [304].

The impact of ketamine on microglial-associated pro- 
and anti-inflammatory cytokines has emerged with some 
mixed results; however, recent research is largely empha-
sizing ketamine’s neuroprotective effects via modulation 
of microglial cytokine release. In one study, ketamine 
administration had no significant impact on IL-1β, IL-6, nor 
BDNF mRNA levels and the therapeutic effect was instead 
primarily driven through the NDMA receptor blockade 
[304]3. Yang and colleagues found that pre-treatment with 
the esketamine had a significant impact on pro-inflamma-
tory (TNF-α, IL-1β) cytokine and NF-κB expression in the 
dorsal striatum, but not in the PFC nor anterior cingulate 

3  To explain finding no alteration in BDNF mRNA levels post-ket-
amine administration, Walker and colleagues cite the 6-hour post-
treatment measurement time which likely missed the acute increase in 
BDNF from ketamine administration [304].
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as well as significantly decreased LPS-induced height-
ened mRNA levels of pro-inflammatory mediators (TNF-
α, IL-1β, monocyte chemoattractant protein-1, CD16, and 
CD32) and increased anti-inflammatory mediator mRNA 
levels (Arg-1, CD206, TGF-β, IL-10, YM-1) in the CA1, 
CA3, and dentate gyrus regions of the hippocampus – 
effects dependent on HMGB1-RAGE pathway suppression 
by ketamine [327]. Strikingly, Wu and colleagues also dem-
onstrated that ketamine can regulate autophagic activity in 
microglia through the HMGB1-RAGE pathway and is criti-
cal to therapeutic effects in mice (8–10 week-old, C57BL/6, 
Charles River; [327]). This recent finding implicating the 
HMGB1-RAGE interactions adds to the plethora of poten-
tial therapeutic mechanisms of ketamine, driven through its 
impact on microglia.

Discussion: Investigating the Important 
Targets of Microglial Pharmacology

Microglia as a Target for Inducing Adult 
Neurogenesis

The scientific understanding of neurological disorders has 
evolved over the last decades to integrate research empha-
sizing the importance of the immune system and the inflam-
matory environment of the CNS. As microglia are the 
primary resident immune cells of the CNS and are central 
to maintaining or altering the brain’s inflammatory environ-
ment, this has implicated microglia in the maintenance of 
homeostasis, but also in many CNS disorders and injuries. 
These findings have emphasized the value of looking at the 
brain on a more holistic level, integrating neuronal with non-
neuronal cells in our understanding of health and disease.

MDD is a prime example of a psychiatric condition whose 
scientific understanding has changed with further research 
in neuroimmunology. Although the monoamine theory has 
been comprehensively investigated in depressed patients 
and animal models of MDD [330–332], more recently other 
theories have increasingly received attention, including neu-
roimmune dysfunction [299]. In this regard, experimental 
animal studies and post-mortem clinical findings have dem-
onstrated a close association between MDD and microglial 
pro-inflammatory activity [54, 333–336]. Inflammatory 
challenges, such as injection of LPS and pathogenic agents, 
cause depressive-like behaviors in mice [337–339], while 
treatment with pro-inflammatory cytokines or endotoxin 
leads to depressive symptoms in humans [340–342]. Con-
versely, antidepressant treatment can attenuate underlying 
inflammation [343, 344], while anti-inflammatory agents 
can ameliorate clinical depression scores [345]. Inflamma-
tion may also be a key mediator linking chronic stress to 

double immunopositive microglia – emphasizing ket-
amine’s neuroprotective effects [318].

Recent research has implicated the microglial NOD-
like receptor pyrin domain containing protein 3 (NLRP3) 
inflammasome in the rapid anti-depressant effects of ket-
amine [319]. The inflammasome, containing NLRP3, a pro-
caspase-1 precursor, and apoptosis-associated speck-like 
protein containing a caspase recruiting domain, is known 
to trigger caspase-1 which in turns activates IL-1β [320] – 
often coupling with NF-κB in this process [321]. The NLRP3 
inflammasome is highly implicated in MDD because of its 
increased expression in humans suffering from and rodent 
models of MDD [320, 322–324]. The NLRP3 inflamma-
some is also known to modulate autophagic cellular activi-
ties (reviewed by [325]). In a chronic restraint stress rat (8 
week-old, Wistar-Kyoto) model of depression, blocking 
microglial autophagic activities with an inhibitor (Baf A1) 
also blocked ketamine-induced (1) rapid anti-depressant 
effects, (2) amelioration of increased NLRP3 activation 
and IL-1β expression in the PFC and hippocampus, and 
(3) increase in synaptic plasticity markers (BDNF and syn-
aptophysin) also in the PFC and hippocampus [319]. This 
study, along with others relating to ketamine and propofol, 
implicate the regulation microglial NLRP3 and associated 
autophagic activities as critical to their therapeutic effects in 
the brain [319, 326, 327].

Another mechanism of action involves ketamine’s abil-
ity to induce the disassembly of perineuronal nets, an 
extracellular matrix component responsible for neuronal 
development, synaptic plasticity, and maintenance of the 
balance between inhibition and excitation, through modu-
lation of microglial activity [328]. Specifically, Venturino 
and colleagues blocked microglial signalling pathways 
using a CSF1R inhibitor (PLX5622) and purinergic recep-
tor, G-protein coupled, 12 (P2Y12) blocker (clopidogrel4), 
which both, independently, prevented ketamine-induced 
disassembly of mature perineuronal nets and associated 
neuroplasticity in mice (8–12 week-old, C57BL/6J; [328]) 
– proposing a novel mechanism of ketamine-induced, 
microglial-dependent neuroplasticity.

Another recent paper isolated the microglial high motil-
ity group box 1 (HMGB1)-advanced glycation end products 
(RAGE) receptor pathway as key to the therapeutic effects 
of ketamine [327]. Ketamine decreased LPS-induced upreg-
ulation of HMGB1 and its translocation into the cytoplasm 
and rescued LPS-induced depressive-like behaviors in 
mice (8–10 week-old, C57BL/6, Charles River; [327]). In 
the same study, ketamine attenuated LPS-induced microg-
lial upregulation of CD68 and downregulation of CD206, 

4  Clopidogrel is known to disable microglial purinergic signalling 
via P2Y12 receptor, a signalling pathway that is critical to microglial 
response to injury and has an important role in neuroplasticity [329].
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disorders, such as mood disorders [369–371], substance use 
disorders [372], PTSD [373], and AD [374]. Therefore, a 
current theory for the quick antidepressant effects and long-
term efficacy of both psychedelics and ketamine presumes 
the drug’s ability to promote neurogenesis in specific stress-
susceptible brain regions resulting in a rescue of depleted 
synaptic density [182, 315, 375, 376]. Specifically, regener-
ation of layer V and II/III frontocortical pyramidal neurons 
appears crucial for therapeutic efficacy in rodent models 
[315, 376]. Critically, this neuronal regrowth is directly 
associated with behavioral improvements, symptom reduc-
tion, and sustained therapeutic effects in both human and 
animal research (reviewed by [375]). In fact, inhibition 
of neurogenesis through genetic ablation of BDNF abro-
gates ketamine-mediated improvements in synaptic den-
sity and depressive-like behaviors in mice (1–2 month-old, 
C57BL/6J and Thy1-GFP-M; [218]), emphasizing the role 
of BDNF in this process. Further support to this hypoth-
esis comes from research showing that adult hippocampal 
neurogenesis is necessary for the beneficial effects of anti-
depressants, while its inhibition causes depressive-like and 
anxiety-like behaviors in rodents [199, 200, 377, 378]. For 
these reasons, drugs with the ability to rescue decreases 
in synaptic density and dendritic length have been termed 
‘psychoplastogens’ [201, 379]. While most research has 
focused on the anti-depressant effects of these agents, their 
‘plastogenic’ effects may be implicated and applied to 
other CNS disorders characterized by corticolimbic neuro-
nal atrophy, such as AD, substance use disorders, TBI, or 
PD – suggesting a novel therapeutic target. As microglia 
are key to synaptic remodelling, notably through phago-
cytic activity, modulate the inflammatory environment, 
and demonstrate morphological changes and differences 
in density among key brain regions associated with CNS 
disorders, we hypothesize that microglia are central to the 
action of ‘psychoplastogenic’ drugs. Clear support is found 
in a recent paper by Wang and colleagues demonstrating 
that esketamine significantly reduced CD68+/IBA1 + co-
expression in the mPFC of a mouse (7 week-old, C57BL/6, 
GPLAC) model of post-operative depression [315]. On 
top of the decreases in microglial immunoreactivity for 
CD68, a marker of phagolysosomal activity, reductions in 
mPFC dendritic spine density and quantity of parvalbumin-
positive neurons as well as depressive-like behaviors were 
rescued with esketamine treatment [315] – similar neuro-
genic results were seen using a single-dose of psychedelic 
substance, psilocybin, in mice (6–8 week-old, C57BL/6J; 
[376]). Although more research is necessary to elucidate full 
mechanisms, we hypothesize that the ability of these ‘psy-
choplastogenic’ agents to modulate microglial structure and 
function involves several integrated mechanisms compris-
ing microglial production and release of BDNF, expression 

the development of mood disorders [337, 342, 346]. Under 
chronic stressful conditions, microglia respond to glucocor-
ticoids and produce pro-inflammatory cytokines, contrib-
ute to increased BBB permeability, and recruit peripheral 
immune cells to the brain parenchyma [54, 337, 346–349]. 
Increased microglial ionized calcium binding adaptor mole-
cule-1 (IBA1)5 immunopositivity, thought to indicate a pro-
inflammatory microglial state, and increased expression of 
pro-inflammatory cytokines, have been observed in animal 
models of MDD [336, 337, 347, 352] and human patients 
diagnosed with MDD [353]. Specifically, several post-mor-
tem studies have confirmed the existence of excessive cen-
tral and peripheral concentrations of inflammatory proteins 
and cytokines such as IL-1β, IL-6, TNF-α, and C-reactive 
protein in patients with chronic depression [354–356]. Fur-
ther, the transformation of microglial activity from largely 
homeostatic and surveying behavior to pro-inflammatory 
and/or highly phagocytic – a likely result of prolonged 
immune challenges as well as a combination of contextual 
susceptibility factors (such as stress, lifestyle, diet, genetics) 
– are associated with the expression of key surface inflam-
matory markers such as CD86, major histocompatibility 
complex-II (MHC-II), and chemokines (e.g., CCL3, CCL7, 
CCL8, CCL11), as well as correlated with depressive-like 
behavior [357, 358]. Across rodent and human research, 
increased microglial density and arborization in stress-
susceptible brain regions – such as CA1 and CA3 of the 
hippocampus, the nucleus accumbens, anterior cingulate, 
PFC, and mediodorsal thalamus – have been implicated in 
the pathogenesis of MDD [359–364] and are hypothesized 
to be involved in suicidal behavior [365].

Additionally, microglial involvement in alcohol depen-
dence is well-supported [366]. Specifically, in AUD and 
other substance use disorders, microglia contribute to patho-
logical rewiring of the reward circuits through the produc-
tion of pro-inflammatory cytokines, remodelling of synaptic 
connections, and prevention of neurogenesis through ele-
vated phagocytosis of neural progenitors [210, 367, 368]. 
Recent research indicates that microglia also play detrimen-
tal roles in transgenic mice (8–16 week-old, CX3CR1creER 
and iDTR) subjected to context-specific electric shocks, a 
model for PTSD, and their genetic or pharmacological abla-
tion using microglia-specific inducible diphtheria toxin 
susceptibility or modulation with minocycline attenuates 
pathological behaviors, such as fear context-induced freez-
ing time [232].

Impaired adult neurogenesis of cortical and limbic 
regions of the brain has been identified as key to many CNS 

5  The validity of IBA1 as a specific marker of microglial ‘activation’ 
(a term rejected by the field [24]) or reactivity has recently been ques-
tioned, and thus results using exclusively IBA1 should be interpreted 
with appropriate caution[350, 351].
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behavioral therapeutic efficacy, is critical for the therapeu-
tic mechanism of the topical pharmacological agents [315, 
376]. Building on the neuronal production of BDNF in the 
CA1 and CA3 of the hippocampus, which contributes to the 
therapeutic efficacy of ketamine [388], Yao and colleagues 
demonstrated that ERK-NRBP1-CREB (CREB being a 
well-established primary transcription factor for BDNF 
[389]) signalling in microglia is essential to the anti-depres-
sant effects of R-ketamine. In this study, ketamine-induced 
phosphorylation of the ERK pathway in microglia led to 
an increased production of BDNF and anti-inflammatory 
cytokines, while reducing pro-inflammatory cytokines in 
the mPFC of mice (8 week-old, C57BL/6, Japan SLC inc. 
[390]). These findings emphasize the importance of ERK-
NF-κB signalling in the regulation of microglial BDNF and 
hence synaptic plasticity [384, 385, 387]. We hypothesize 
that microglial BDNF is key to the previously proposed 
mechanisms of psychedelic- and ketamine-induced neu-
roplasticity [379], which extends to propofol’s therapeutic 
mechanisms of action (see Fig. 1).

Sigma-1 Receptors

As briefly described above, S1Rs are intracellular trans-
membrane receptors chaperones at the mitochondria-associ-
ated membrane (MAM) – specifically the mitochondria-ER 
interface – that are important for mitochondrial ATP syn-
thesis, intracellular Ca2+ homeostasis, and they regulate 
various cellular functions, including stress response, lipid 
metabolism, and neuroplasticity [391–393]. As molecular 
chaperones, S1Rs support the folding of intracellular pro-
teins and can translocate from the MAM to various cellular 
locations to form heterologous structures with other pro-
teins or receptors, such as NMDA or inositol triphosphate 
receptors (reviewed by [394]). S1Rs are expressed through-
out most CNS cells including neurons, microglia, astro-
cytes, and oligodendrocytes [391, 395], particularly, but 
not exclusively, in the hippocampus and PFC of human and 
rodent brains [396–399]. The S1R has been implicated in a 
number of CNS disorders including AD [400], Huntington’s 
disease [401], PD [402, 403], mood disorders [404–406], 
schizophrenia [407], TBI [408, 409], and stroke [410], 
identifying S1Rs as novel therapeutic targets for a range 
of conditions. S1R agonism is progressively being inves-
tigated for its immunomodulatory role in the CNS, specifi-
cally on glial cells [411, 412]. For example, S1R expression 
is significantly increased following TBI in humans and 
mice, and CRISPR/Cas9-mediated knockout of S1R in 
mice (6–8 week-old, C57BL/6, Experimental Animal Lab-
oratories of the Academy of Military Medical Sciences 
(EALAMMS), Beijing, China) significantly increases ER 
stress following TBI [413]. Previous findings demonstrated 

of 5-HT receptors and S1Rs, and direct impacts on KP 
metabolism. These different mechanisms are summarized in 
Fig. 1 and will be described in detail below.

Microglial BDNF and its Relevance in Pharmacological 
Therapy

The neurotrophic factor BDNF is commonly associated 
with neuronal maintenance and synaptic plasticity. When 
released into the extracellular space, BDNF binds with high 
affinity to the tyrosine kinase B (TrkB) receptor (found 
pre- and post-synaptically) which activates downstream 
intracellular cascades involving phospholipase-Cγ (PLC-
γ), Ras-mitogen activated protein Kinase (MPAK), mTOR, 
and phosphatidylinositol-3-kinase (PI3K) [380]. The down-
stream effects of TrkB receptor agonism often create a posi-
tive feedback loop on the recipient cell, resulting in increased 
expression of the transcription factor CREB and synthesis of 
BDNF [381, 382]. In many CNS disorders (e.g., MDD, AD, 
PD, stroke) dysregulation of the TrkB/BDNF pathway and 
decreases in synaptic plasticity and density are central phe-
notypes (reviewed by [383]). Evidence suggests that BDNF 
released from microglia is essential to maintaining synaptic 
plasticity in the brain, particularly in recovery from CNS 
disorders. A central study by Parkhurst and colleagues dem-
onstrated that microglial BDNF increases TrkB phosphory-
lation on neurons and that depletion of microglia (using a 
CX3CR1CreER transgenic mouse model) leads to decreased 
synapse related proteins and glutamatergic signalling [43]. 
Further, this study demonstrated that BDNF knockout in 
microglia (1–2 month-old, CX3CR1CreER:BDNFflox mice) 
resulted in significant deficits in learning-dependent spine 
formation and associated behavioral performance over 2 
days, without affecting the overall basal level densities of 
cortical nor hippocampal neurons and synapses [43] – how-
ever, this was only measured under homeostatic conditions. 
Using a similar model (CX3CR1CreER:BDNFflox mice) under 
pathological conditions, it was subsequently demonstrated 
that microglial BDNF is important for hippocampal plas-
ticity during recovery from TBI [384]) as well as recovery 
of cortical plasticity and reducing pain hypersensitivity in a 
neuropathic pain model [385]. Further, the release of BDNF 
from neurons appears to prevent microglial engulfment 
of mossy fibre synapses in the CA3 of mice (8–12 week, 
C57BL/6J; [386]). Microglial BDNF production was also 
shown to regulate GABA release at cortical interneurons, 
demonstrating the ability of microglia to alter network excit-
ability and cortical functions [35, 387]. Altogether, there is 
a tight relationship between microglial dynamics (motility, 
surveillance, phagocytosis), BDNF, and synaptic plasticity.

BDNF, as it is repeatedly found to be an important fac-
tor in neuronal regrowth and associated with cognitive and 

1 3



Neurochemical Research

Fig. 1 A summary of the putative intracellular signalling pathways 
of psychedelics, anaesthetics (e.g., propofol), or ketamine action on 
microglia. These substances can act as: (1) agonists of a sigma-1 
receptor – involved in regulation of microglial inflammatory activ-
ity, morphology changes, proliferation, and motility as well as BDNF 
signalling through several mechanisms including mitochondrial ATP 
synthesis and calcium signalling; (2) agonists of 5-HT2A/2B receptors – 
regulating key microglial signalling pathways: (a) positive regulation 
of microglial motility and process growth; (b) stimulation of ERK/
CREB/NRBP1-dependent expression and release of BDNF, as well 
as anti-inflammatory cytokine or pro-neurogenic factors release; (c) 
inhibition of kynurenine pathway by acting on IDO or downstream QA 
– an endogenous agonist of NMDA receptors – hence contributing to 
inhibition of NF-κB pathway and phagocytic activity; (d) blockade of 
NF-κB and downstream inflammatory pathway by inhibition of TLR4, 
a pathogen pattern recognition receptor; (3) inhibitors of microglial 
HMGB1-RAGE signalling – a key player in control of microglial 
inflammatory activity as well as autophagy processes; (4) antagonists 
of NMDA receptor – preventing CaMK2/PARP-1 pathway mediated 
activation of NF-κB and inflammation; and (5) inhibitors of the cas-
pase cascade activation by NLRP3 inflammasome through acting on 

GABAA receptors or unspecified mechanism – blocking the NF-κB 
and inflammatory pathway activation. 5-HT2A/2B – 5-Hydroxytryp-
tamine/Serotonin receptor 2 A/2B; σ1-R – Sigma-1 receptor; ATP – 
Adenosine tri-phosphate; BDNF – Brain-derived neurotrophic factor; 
[Ca2+] – calcium ion; CaMK2 – Ca2+/Calmodulin-dependent protein 
kinase II; CASP-1/-3 – Caspase-1/-3; [Cl−] – chloride ion; CREB – 
cAMP-response element binding protein; NRBP1 – Nuclear receptor-
binding protein; ERK – Extracellular signal-regulated kinase; GABAA 
– γ-Aminobutyric acid type A receptor; HMGB1 – High Mobility 
Group Box 1; IL-1β – Interleukin 1 beta; IL-6 – Interleukin 6; IL-10 
– Interleukin 10; iNOS – inducible Nitric oxide synthase; KYN – 
Kynurenine; LPS – Lipopolysaccharide; MAPK – Mitogen-activated 
protein kinase; mTOR – Mechanistic target of rapamycine; NFκB – 
Nuclear factor kappa B; NLRP3 – NLR family pyrin domain contain-
ing 3; NMDA – N-methyl-D-aspartate receptor; NO – nitric oxide; 
PARP-1 – Poly [ADP-ribose] polymerase 1; QA – Quinolinic acid; 
RAGE – Receptor for advanced glycation endproducts; ROS – Reac-
tive oxidative species; TLR4 – Toll-like receptor 4; TNF-α – Tumor 
necrosis factor alpha; TRκB – Tropomyosin receptor kinase B; Trp 
– Tryptophan; TRPM-2 – Transient receptor potential cation channel 
subfamily M Member 2. Made with Adobe Illustrator
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more research is needed to fully understand the downstream 
effects of S1R agonism (and antagonism), psychedelics, 
propofol, and ketamine have all been reported to act on the 
S1R and this receptor presents strong evidence of being cen-
tral to their therapeutic mechanisms, particularly through 
its impact on microglia. It is important to emphasize that 
this receptor is ubiquitously expressed in the CNS and fur-
ther research, isolating S1R and its downstream effects in 
microglia, is required to fully elucidate the role of microglia 
in the therapeutic mechanisms of these agents.

5-HT Receptors and Microglia

As discussed, many psychoactive effects of psychedelics 
are exerted through their interaction with serotonin recep-
tors. While there are seven major categories of serotonergic 
receptors, the 5-HT2 receptor subtypes are the best-charac-
terized with respect to the psychopharmacological agents 
discussed here, particularly psychedelics [423]. Psycho-
active and therapeutic effects of psychedelics are driven 
primarily through 5-HT2A receptors, with a minor contri-
bution of the 5-HT2B/2 C subtypes [379, 423]. Using RNA 
extraction and PCR amplification from isolated microg-
lia in early postnatal and adult mice (C57BL/6, source 
unspecified), Krabbe and colleagues demonstrated the 
adult expression of multiple serotonin receptors, including 
5-HT1A, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3B, 5-HT5A, 
and 5-HT7 receptors [189]. Despite wide expression of 
5-HT receptors, microglial research has primarily focused 
on the unique expression of the 5-HT2B receptor, particu-
larly during healthy development, where it plays a critical 
role [189]. Primary mouse (C57BL/6, source unspecified) 
microglia from whole-brain [189] and hippocampi [424] 
of neonatal mice (C57BL/6, Institut du Fer à Moulin) 
appeared to exclusively express 5-HT2B receptors, suggest-
ing development-related differences in microglial seroto-
nergic receptor expression. There is possibility that 5-HT2B 
receptor agonism may represent a mechanism underlying 
therapeutic effect of psychedelics, such as DMT and psi-
locin [248]. However, there are few investigations of the 
role of serotonergic signalling on microglia in adulthood. 
Béchade and colleagues, using 129S2/SvPas mice, demon-
strated that 5-HT2B receptor knockout was associated with 
an increase in LPS-induced brain inflammation and weight 
loss during development, although the same effect was not 
observed in adulthood [425]. Similarly, despite 5-HT2B 
receptor outlined as a therapeutic target for amyotrophic 
lateral sclerosis (ALS), particularly the 5-HT2B expression 
on microglia [426], a 5-HT2B receptor agonist (BW723C86) 
was unable to rescue degenerative effects in an adult mouse 
model of acute ALS (Sod1G86R on FVB/N background 
[427]). Furthermore, Cameron and colleagues reported the 

that immune-activation via LPS treatment in primary rat 
microglia [121] and chronic stress in rats (adult, SD; [414]) 
led to downregulation of S1R. Shi and colleagues also 
observed that agonism of S1R (via PRE-084) was neuropro-
tective, considerably reducing ER stress, reactive microglia, 
and microglia-associated pro-inflammatory mediators (e.g., 
TNF-α, IL-6, iNOS, IL-β) in mice (6–8 week-old, C57BL/6, 
EALAMMS; [413]). Similar reductions in microglia-
mediated inflammation were observed using an S1R ago-
nist (SKF10047) in an adult rat (SD) stress-induced model 
of hypertension [414]. Alternatively, treatment of mice 
(CD1, age unspecified) with an S1R antagonist (S1RA or 
E-52,862/MR309) yielded quicker functional recovery and 
reduced infarct volume following ischemic stroke compared 
to vehicle-treated controls [415]. Nevertheless, S1Rs appear 
to have a central role in neuroprotection and immunomodu-
lation, specifically through altering microglial activity.

The three major drug categories discussed in the current 
review have been reported to act on the S1R. As discussed 
earlier, both endogenous and exogenous DMT appear to 
have neuroprotective effects (increasing anti-inflammatory 
and decreasing pro-inflammatory cytokines) driven through 
its agonism of S1Rs on immune cells [249–251, 253]. Addi-
tionally, some evidence suggests that propofol is an antago-
nist of S1R [416]. Using rat (adult, Wistar) brain samples, it 
was found that propofol causes a reduction in the maximum 
binding capacity of N-allylnormetazocine, a selective S1R 
agonist [416]. Further, propofol administration selectively 
interferes with the effects of another S1R agonist (pentazo-
cine): namely, propofol reduced c-fos expression, but not 
bradykinin-induced intracellular Ca2+ concentration, in cells 
of the posterior cingulate and retrosplenial cortex [416]. 
Therefore, the immunomodulatory effects of propofol may 
be partially mediated by the S1R given S1Rs’ impact on the 
neuroimmune environment [402, 411, 417].6

There is also evidence that S1Rs may be involved in reg-
ulating addiction through the dopaminergic system [420–
422], potentially contributing to the reported anti-addictive 
properties of many psychedelics and ketamine. Therefore, 
this supports the evidence that microglia play a role in regu-
lating the rewiring of motivational circuits and cognitive 
structures of addiction [210, 367, 368] and warrants fur-
ther investigation to provide mechanistic detail. Although 

6  S1Rs may also mediate the nuanced and dose-dependent effects of 
propofol (e.g., how propofol transitions from neuroprotective to neu-
rotoxic at high enough concentrations; [416, 418]). For instance, pro-
pofol’s ability to lessen the binding potential of N-allylnormetazocine 
to S1Rs occurred in a dose-dependent manner, with a higher anesthetic 
concentration resulting in greater agonist competition [416]. The neu-
rotoxic effects of high concentrations of general anesthetic are indeed 
hypothesized to be the result of disrupted intracellular calcium homeo-
stasis, as mediated by S1Rs, thereby activating pro-apoptotic mecha-
nisms [84, 418, 419].
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response to serotonin application [189]. However, the pro-
duction of anti-inflammatory cytokines or neurotrophic fac-
tors was not measured in this study. Importantly, activation 
of the 5-HT2A/2B receptors has demonstrated an increase in 
microglial motility, process growth, and decreases in phago-
cytic activity in primary mouse (C57BL/6, source unspeci-
fied) microglia [189] as well as in young (< 1 month-old) 
and adult (2 month-old) mouse (CX3CR1GFP/+) slices of the 
thalamus [186]. Altogether, evidence supports 5-HT2A/2B 
receptor agonism as important for regulating microglial 
activity as well as 5-HT2A being critical to the therapeutic 
effects of psychedelics and ketamine, while more work is 
needed to understand the impact of these pharmacological 
agents on microglial receptors specifically.

Targeting GABA Receptors on Microglia

Another important receptor family found on microglia 
are GABA receptors, which are particularly implicated in 
the mechanism of propofol. Microglial expression of both 
GABAA (ionotropic subtype) and GABAB (metabotropic 
subtype) receptors has been demonstrated across postnatal 
and adult mice (Naval Medical Research Institute; NMRI; 
[430]), in primary rat (Wistar) microglia [85], and primary 
human microglia [431]. Microglial response to GABA sig-
nalling is essential during neurodevelopment [432], particu-
larly in shaping the developing inhibitory circuits [433]. In 
primary rat (Wistar) microglia stimulated with LPS, Kuhn 
and colleagues demonstrated that a GABAB receptor ago-
nist (baclofen) attenuates the release of IL-6 and IL-12-p40, 
without influencing TNF-α or NO levels. By contrast, in 
LPS-stimulated primary human microglia, Lee and col-
leagues found that the GABA, GABAA agonist (muscimol), 
and baclofen all lead to decreases in microglial TNF-α 
and IL-6 levels [431]. GABA release from neurons also 
impacted surveillance and morphology by decreasing pro-
cess velocity as shown using in vivo imaging of microglia 
in retinal explants from CX3CR1+/GFP mice [434]. There is 
evidence that GABA, dependent on concentration and expo-
sure time, can induce an inflammatory reaction by microglia 
– echoing similar findings as propofol. Lang and colleagues 
demonstrated that sustained GABA response from a cold 
exposure stress mouse (6-week-old, C57BL/6, Experimen-
tal Animal Center of Vital River, Beijing) model was essen-
tial to inducing the inflammatory reaction (measured via 
expression of IL-1β and IBA1 in Western blot and immuno-
fluorescence; [435]). Additionally, there is some indication 
that GABA activity increases microglial ROS in primary rat 
(SD) microglia [436] and MIP-1β production in postnatal 
and adult mouse (NMRI) brain [430]. To our knowledge, 
no studies have investigated propofol’s impact on microg-
lial GABA channels; however, given its GABAA agonistic 

development of psychedelic analogues with agonistic activ-
ity on 5-HT2A and with simultaneous antagonistic activity 
on 5-HT2B receptors [217]. Although analysis of microglial 
activity was not performed, these novel compounds, while 
antagonistic for 5-HT2B receptors, were capable of main-
taining therapeutic efficacy in treatment of depressive-like 
behaviors in mice (8 week-old, C57BL/6J; [217]). These 
findings together suggest that while 5-HT2B receptor ago-
nism may regulate the CNS inflammatory environment and 
5-HT2B receptor expression on microglia is critical during 
development, agonism of this receptor may not be required 
for the therapeutic effects of psychedelics in the CNS dur-
ing adulthood.7 Regardless, assessing location-dependent 
and developmental differences in expression of 5-HT 
receptors in neurons and non-neuronal cells will be crucial 
when investigating their involvement in the therapeutic 
mechanism of these pharmacological agents. Further work 
is urgently needed to fully understand possible location-
dependent up- and down-regulation of various 5-HT recep-
tors in microglia and other neural cells across the lifespan 
under homeostatic, inflammatory, and treatment conditions.

There is some evidence that 5-HT receptor agonism on 
microglia may contribute to the therapeutic effects of psy-
chedelics and ketamine. Glebov and colleagues revealed 
in primary mouse (C57BL/6J) microglia that serotonin 
agonism on 5-HT2A/2B/4 receptor cause release of microg-
lial exosomes, membranous vesicles that contain vari-
ous lipids and proteins prepared for extracellular release 
[187]. Given this, one hypothesis is that 5-HT2A receptor 
agonism via psychedelics or ketamine on microglia pro-
duces a wave of exosome release. While the cargo of these 
vesicles appears to vary [429] and depends on a number of 
factors such as localization, age, sex, and particular con-
text of health and disease, if the cargo includes microglial 
derived neurotrophic factors, such as BDNF or insulin-like 
growth factor-1, this rapid exosome release could specu-
latively contribute to the quick neuroplastic effects in 
synaptic density reported in psychedelic and ketamine treat-
ment. Of note, Krabbe and colleagues did not observe an 
increase in nitric oxide or cytokine (TNF-α, macrophage 
inflammatory protein (MIP)-1α, and IL-6) release by pri-
mary mouse (C57BL/6, source unspecified) microglia in 

7  However, it is often the case that molecules or proteins expressed 
abundantly in development with corresponding low levels in adult-
hood are upregulated in disease states or in exposure to environmental 
risk factors – TREM2, TAM kinases, and the complement pathway 
in microglia are exemplars of this trend[27, 428]. Given this pattern 
appears to apply to its expression in microglia, 5-HT2B receptors may 
yet play an important role in therapeutic efficacy of 5-HT ligands in the 
brain. It could be hypothesized that if 5-HT2B is found to be of higher 
expression in certain diseased states, it may be that the antagonist 
activity on 5-HT2B receptors (demonstrated with TBG [217]) may con-
tribute to the therapeutics effects of agonistic 5-HT2A receptor activity.
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CA1/2/3 regions of the hippocampus without correspond-
ing changes in hippocampal size. The authors proposed 
that this contrasting finding may have resulted from pos-
sible compensatory neuroprotective mechanisms, an insuf-
ficient sample size, variation in disease state severity and/
or region-specific differences in microglial metabolism 
[451]. The dysregulation of KP metabolism was identified 
as a prominent mechanism underlying CNS inflammation-
induced upregulation of glutamatergic neurotransmission, 
particularly through agonistic binding of QA to NMDA 
receptors impacting synaptic plasticity [332, 452]. Taken 
together, this research supports the neuroplasticity hypoth-
esis of depression and other CNS disorders, providing 
mechanistic evidence for the perturbed neuroplasticity and 
decreases in dendritic spine density commonly observed in 
patients with MDD and animal models of depression [451, 
453, 454].

It is hypothesized that one of the mechanisms of action 
for these pharmacological agents is by altering KP metabo-
lism, likely through targeting microglial production of QA. 
In support, Verdonk and colleagues demonstrated that ket-
amine decreased microglial production of QA compared to 
vehicle in a LPS-induced mouse (9–11 week-old, C57BL/
BJRj) model of depression [302]. Further, ketamine rescued 
LPS-induced depressive-like behaviors, decreased brain-
wide levels of pro-inflammatory cytokines (IL-1α, IL-6 
and TNF-α) and altered microglial morphological charac-
teristics (decreasing cell body area and increasing ramifica-
tion significantly in the mPFC, but non-significantly in the 
hippocampus) in the same mice. From a mechanistic point 
of view, Lisak and colleagues found that ANAVEX2-73 
and other S1R agonists were neuroprotective against the 
effects of QA, citing S1R’s ability to manage the microg-
lial response to immune challenges [455]. Additionally, it 
was demonstrated that injection of QA inhibits the DOI-
induced hallucinogenic-like state, assessed based on the 
head twitch reflex of MF1 mice in a dose-dependent man-
ner [456]. This mechanism was not mediated through direct 
or indirect antagonism of 5-HT2A receptors as ligand bind-
ing assays demonstrated no interaction between QA and 
5-HT2A receptors [456], emphasizing that QA must disrupt 
the downstream effects of 5-HT2A receptor agonism through 
alternative mechanisms. The NMDA receptor agonism of 
QA appears to be the most likely an alternative mechanism; 
QA is known to increase oxidative stress [457] and disrupt 
cytoskeletal elements in neurons and astrocytes [458] which 
likely play into QA’s ability to perturb downstream effects 
of 5-HT2A receptor agonism. As discussed previously, S1R 
agonism is implicated in NMDA receptor activity and syn-
aptic plasticity (reviewed by [459]). Also important to this 
mechanism, KA, an alternative metabolite of KP metabo-
lism, is an uncompetitive antagonist of the NMDA receptor 

activity, we would expect this mechanism to contribute to 
propofol’s anti-inflammatory activity at low concentrations.

Targeting the Kynurenine Pathway Through Microglia

As briefly mentioned above, tryptophan is an amino acid 
whose metabolism is critical to the functioning of a healthy 
CNS as a precursor for necessary psychoactive metabolites, 
such as serotonin, melatonin, and KA (reviewed by [437]). 
Specifically, the KP of tryptophan metabolism results in a 
number of downstream metabolites, including QA, KA, pic-
olinic acid, and nicotinamide adenine dinucleotide (NAD+), 
with a range of actions in the CNS (reviewed by [438]). 
Tryptophan metabolism homeostasis is strongly implicated 
in health and diseases of the CNS; including the pathology 
of AD [439], mood disorders [440], schizophrenia [441], 
and PD [442]. Depletion of serotonin during CNS inflam-
mation is associated with increased tryptophan catabolism 
(via the KP) to kynurenine (KYN), QA, and KA, and may 
contribute to depressive symptomatology [443, 444]. Clini-
cal evidence suggests that elevated serum QA and KA can 
be used as biomarkers of depression severity [445, 446]. At 
steady state, brain KP metabolism occurs primarily in astro-
cytes [447]; however, under conditions of immune chal-
lenges or brain disorders associated with a disruption to the 
inflammatory balance of the brain, such as MDD or TBI, 
microglia can modulate KP metabolism by preferentially 
generating certain metabolites [301, 302]. For example, 
under conditions of acute and chronic immune activation, 
such as chronic LPS or pro-inflammatory cytokine (TNF-α 
or IL-6) exposure, microglia increase the expression of 
indoleamine 2,3-dioxygenase (IDO) which promotes ele-
vated production of QA [300, 448]. Critical to its down-
stream effects, QA is a powerful NMDA agonist which can 
mediate glutamatergic hyperactivity [300, 449]. Kubesova 
and colleagues found increased serum levels of QA and 
other KP metabolites in an early postnatal, LPS-induced rat 
(Wister/Hann) model of depression compared to controls 
[450]. These elevated QA levels correlated with reduced 
hippocampal volume, increased astrogliosis, and decreased 
dopaminergic neurons in the substantia nigra pars compacta 
(implicated in the pathogenesis of PD; [450]). Steiner and 
colleagues also demonstrated in human brain tissue that 
increases in microglial production of QA8 were correlated 
to atrophy of subregions of the anterior cingulate cortex and 
increased depressive severity [360]. Interestingly, Busse 
and colleagues examined post-suicide human brain tissue 
and found a reduction in microglial production of QA in the 

8  In research by Steiner and colleagues and Busse and colleagues, all 
cells immune-positive for QA were classified and analyzed[360, 451] 
– in both cases, QA immunoreactivity was exclusively found around 
microglia and vascular monocytes.
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states of microglia) might impact pharmacological treat-
ment efficacy. Distinguishing how heterogenous glial states 
might enhance, attenuate, or prevent the therapeutic efficacy 
of emerging pharmacotherapies is a future challenge in the 
fields of microglial biology and pharmacology.

While the role of astrocytes was not a focus in the cur-
rent review, there is evidence pointing to their role in the 
therapeutic effect of ketamine [465], psychedelics [466], 
and anesthetics [467, 468], as well. Therefore, another 
critical step toward fully understanding the pharmacody-
namics of these novel therapeutics is developing a deeper 
understanding of glia-glia and neuron-glia communication 
which highlights the critical impact of the local intercellu-
lar communication on pharmacodynamics. Researchers in 
the astrocyte and microglia fields continue to emphasize 
the importance of glial cell crosstalk in the maintenance of 
health and the progression of psychiatric disorders [469], 
neurodegenerative conditions [470, 471], and brain injury 
[472]. An important future challenge is to determine how 
research from multiple fields (e.g., microglia, astrocytes, 
neurovasculature) may be integrated to achieve a more com-
plete understanding of drug effects in the CNS.

Psychedelic and Anesthetic Implications in Aging and 
Neurodegenerative Disorders

The ‘plastogenic’ effects of pharmacological agents covered 
in this review, perhaps unsurprisingly, have been suggested 
to disrupt the aging process in the CNS [84, 473] and these 
agents are suggested to influence the progression of age-
related disorders [248]. Microglia among other glial cells 
are highly implicated in the aging process of the CNS [474]; 
in fact, as the brain ages, microglia respond more acutely 
to inflammatory challenges, adopting a “primed” microglial 
state [475]. Keane and colleagues emphasized microglial 
mTOR as upregulated in the aging process and highlighted 
the difference in outcomes of mTOR activation across the 
lifespan (using aged C57BL/6J mice; [476]). As mTOR is 
highly implicated in underlying the ‘psychoplastogenic’ 
effects of drugs like psychedelics [379], when investigating 
these drugs for anti-aging effects, a focus on their impact 
on microglia is pertinent. Overall, however, there are obsta-
cles in generating adequate models for investigating aging 
microglia and fully elucidating their role in neurodegenera-
tion, such as difficulties in obtaining aged animals, as well 
as expenses and time associated with aging animals. Accel-
erating the aging of primary microglial cultures and other in 
vitro models was also mostly unsuccessful [477].

There is some limited evidence that agonists of 5-HT2A 
(psychedelics, ketamine) may be detrimental in AD. Previ-
ously, 5-HT2 receptor agonism has been implicated in AD 
pathogenesis [478]. Two recent studies demonstrated that 

[438]; similar to the antagonist NMDA receptor activity of 
propofol (see more in Sect. 2.2.1.). Generally, QA and KA 
work in opposition of each other; in fact, low KA/QA blood 
serum ratios are suggested as a predictor of depression 
severity in humans [460] in addition to predicting ketamine 
response in treatment-resistant depression [302]. Overall, 
the impact of KA and QA on the NMDA receptor is cen-
tral to synaptic plasticity and is heavily implicated in MDD 
(reviewed by [461]). Although more research is needed to 
fully elucidate, with mechanistic insight, the spatiotemporal 
relationship between depressive symptoms, alterations in 
synaptic density and plasticity, QA production, microglial 
structure/function, and changes in the CNS inflammatory 
environment, one potential mechanism of psychedelics, ket-
amine, and propofol is their ability to modulate microglial 
impacts on KP of metabolism in the brain parenchyma.

Future Directions in Microglial Pharmacology

Glial Heterogeneity and Communication

Overall, this review has primarily focused on microglia and 
their importance in neuropharmacology in the context of 
existing as well as emerging therapeutic strategies. However, 
despite the progression of research during the last decades 
within the field of microglia, much remains unknown. For 
example, there is a growing abundance of research point-
ing to a number of heterogenous states within microglial 
populations in human and rodent brains, such as disease-
associated (DAMs) and dark microglia, differentiated based 
on their expression and transcriptomic profile, localization, 
morphology, ultrastructure, as well as disease specificity 
[462–464]. It is likely that certain microglial states may be 
of greater or lesser relevance as pharmacological targets 
due to their differential expression of key molecules, such 
as membrane proteins. For example, dark microglia tend to 
downregulate expression of IBA1, CX3CR1, and puriner-
gic receptor P2Y, G-protein coupled, 12 (P2RY12) while 
strongly upregulating CD11b, compared to homeostatic 
microglia [27, 462]; therefore, pharmacologically targeting 
microglia via the P2RY12 receptor may not be an effective 
method for targeting dark microglia. Specific to the current 
review, single-cell RNA sequencing data from Keren-Shaul 
and colleagues suggest a slight upregulation (~ 0.6-fold 
increase) of S1R in disease-associated microglia compared 
to homeostatic microglia in an ALS mouse (C57BL/6-SJL 
background) model [463] – suggesting that treatment with 
S1R agonists may preferentially target this transcriptomic 
state and may lead to further therapeutic efficacy of these 
drugs in ALS. Overall, differences in BDNF synthesis, 5-HT 
receptor and S1R expression, and preferential impact on KP 
metabolism (to be elucidated across sub-populations and 
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The KP pathway of tryptophan metabolism is particularly 
associated with aging and age-related diseases, specifically 
because of its production of NAD+ and impact on mito-
chondria (reviewed by [485]). Mitochondrial dysfunction 
(e.g., production of ROS, mutations to mitochondrial DNA, 
structural deterioration and changes in energy production) 
tends to increase with age [486]. It is suggested that NAD+ 
helps protect mitochondria from age-related dysfunction, 
which was mostly explored in animal models [487–489]. 
Additionally, QA, which is one of the primary metabolites 
of tryptophan metabolism, increased tau phosphorylation 
(leading to the neurofibrillary tangles, a hallmark of age-
related degenerative disease) in primary fetal human neu-
ron culture [490] and impaired learning and memory in a 
rat (Wistar) pup model of lead-induced neurotoxicity [491]. 
Aβ plaques were shown to increase microglial production 
of QA [449] and QA’s downstream effects (e.g., increases 
in ROS production and pro-inflammatory cytokine release), 
thus creating a positive-feedback loop that contributes to the 
multifaceted cascade of neurodegeneration. For details on 
propofol’s neuroprotective role in neurodegenerative dis-
ease, see Sect. 2.2.4.

In a mouse (C57BL/6, source unspecified) Aβ oligomer-
injection model of AD pathology, the non-psychedelic selec-
tive S1R agonist PRE-084 further promoted neurogenesis 
by stimulating the proliferation of hippocampal neuronal 
progenitor cells and attenuated astrogliosis [492]. Treat-
ment of PRE-084 or DMT did provide a significant decrease 
in microglial density in the hippocampus; however, IBA1 

lead to the downregulation of TLR4 on microglia as part of the psy-
chedelic and ketamine therapeutic mechanism of action, thus reducing 
production of microglial pro-inflammatory cytokines and phagocy-
tosis. Secondly, 5-HT2A receptor inverse agonism relied upon down-
stream NMDA receptor activity and ERK to increase α-secretase (an 
enzyme that cleaves amyloid precursor proteins) activity – inhibition 
of NMDA receptor activity reversed therapeutic efficacy of Pimavan-
serin in the context of AD pathology [479]. However, in the case of 
MDD pathology (e.g., decreases in cortical spinal density), reducing 
microglial phagocytic activity would be more desirable, emphasizing 
our previous hypotheses that inhibiting NMDA receptor activity is key 
to dampening microglial pro-inflammatory response [484] and is one 
of the central therapeutic mechanisms of psychedelic and anesthetic 
agents – citing ketamine’s ability decreasing microglia QA release and 
propofol’s antagonist activity on NMDA receptor, for example. Over-
all, these findings provide novel evidence demonstrating the nuanced 
nature of functional changes in microglia across disease states and 
health. As an example, in an AD pathology mouse model, an increase 
in phagocytic activity provides therapeutic relief by increased phago-
cytic engulfment of Aβ therefore, antagonist activity on 5-HT2A recep-
tor is emerging as a new therapeutic target for AD [188, 479]. But 
in depressive disorders, a decrease in phagocytic activity instead is 
therapeutic and hypothesized to be driven by 5-HT2A receptor ago-
nism in the context of psychedelics and ketamine. Altogether, these 
findings emphasize the importance of further research into microglial 
5-HT receptors because of their apparent ability to regulate cellular 
activity and their emerging role as a therapeutic target across several 
CNS disorders.

antagonism or inverse agonism of the 5-HT2A receptors 
reduces Aβ pathology in APP/PS1 mice. Yuede and col-
leagues utilized 5-HT2A receptor inverse agonist, Pimavan-
serin, to demonstrate reduction of interstitial fluid levels 
of Aβ by 50% within hours in aged APP/PS1 mice (C3H/
B6 background) – an effect that was dependent on 5-HT2A 
receptors and sustained with chronic (4 months) treatment 
[479]. Chronic Pimavanserin treatment also reduced Aβ 
aggregation in post-mortem immunohistochemical exami-
nation and improved anxiety-like behaviors and cognitive 
function deficits of aged APP/PS1 mice [479]. Interestingly, 
downstream activation of NMDA receptor/ERK pathway to 
activate α-secretase was found to be necessary for 5-HT2A 
suppression of Aβ [479]. To our knowledge, no research has 
investigated the impact of Pimavanserin on microglia. Along 
similar lines, Lu and colleagues found that an antiallergic 
drug (desloratadine; DLT), with demonstrated selective 
5-HT2A receptor antagonism, was therapeutic in aged APP/
PS1 mice (B6C3F1 background) via reducing Aβ plaque 
burden, upregulating microglial expression of TLR2/4, and 
increasing their phagocytosis [188]. DLT also improved 
short-term working memory, spatial working memory and 
learning, and long-term memory tests on APP/PS1 mice, 
as well as promoted synaptic integrity and induced plastic-
ity in the CA1 of the hippocampus [188]. Mechanistically, 
DLT antagonism of 5-HT2A reduced Aβ driven inflamma-
tion in aged APP/PS1 mice, through suppressing the NLRP3 
inflammasome and NF-κB, while 5-HT2A/cyclic adenos-
ine monophosphate (cAMP)/phosphate kinase A (PKA)/
CREB/glucocorticoid receptor (GR) was critical to microg-
lial upregulation of TLR2/4 which was also required for 
increased phagocytosis of Aβ [188]. While neither of these 
studies investigated the impact of a 5-HT2A receptor agonist 
in their models, both provide evidence that antagonist activ-
ity on these receptors is therapeutic in aged APP/PS1 mice, 
hence agonism may be detrimental in the context of AD and 
other age-related disorders.9

9  While both studies investigated the effect of 5-HT2A receptor antag-
onism in an AD mouse model (APP/PS1), with appropriate caution, 
more mechanistic detail on the role of 5-HT2A receptor agonism on 
microglia can be extrapolated from these findings across different dis-
ease conditions. Firstly, antagonism of 5-HT2A receptors upregulated 
TLR2/4 levels on microglia and increased phagocytic activity in aged 
APP/PS1 mice [188]) – this supports reverse hypotheses that agonism 
of these receptors would decrease phagocytosis, likely through sup-
pression of the same 5-HT2A/cAMP/PKA/CREB/GR pathway. TLR4 
has been highly implicated in depression [480, 481] and is one of the 
primary targets of LPS which induces microglial phagocytic activity, 
production of inflammatory cytokines, and depressive-like behaviors 
in mouse models [121]. On the other hand, TLR2s effects seem to 
be more mixed [482, 483], and it has even been suggested to work 
in opposition to TLR4 in regulating mood-related response to stress 
[482] – emphasizing the need to measure TLR2 and TLR4 levels sepa-
rately. Given the association between TLR4 levels and depression, it 
would be unsurprising to find that 5-HT2A receptor agonism would 
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a further significant increase after 20 min in mice (8–12 
week-old, C57BL/6J; [328]). To further characterize these 
effects, Hristovska and colleagues demonstrated that a ket-
amine/xylazine protocol enacted an extensive reduction 
in microglial morphological process complexity and both 
ketamine/xylazine and pentobarbital significantly reduced 
microglial motility in frontal cortex and hippocampus of 
mice (6–10 week-old, CX3CR1eGFP(+/−)) – further question-
ing the functional utility of ketamine as an anesthetic in 
microglial research methodologies [493].

Promising research is emerging from single-cell RNA 
sequencing and other ‘omics techniques, allowing for the 
establishment of microglial states based on the gene expres-
sion profile of each individual cell [23, 28, 464, 494, 495]. 
This method will allow for the differentiation of microglial 
subtypes and differential changes in gene expression pre- 
and post-drug treatment, potentially allowing for identifi-
cation of the precise biological mechanisms mediated by 
these therapeutics. Another technique applied to further 
classify microglia is electron microscopy, which provides 
cellular and sub-cellular analysis of phenotypic expression, 
organelles, and visualization of microglial states via mor-
phology, cellular contacts, cytosol density, and others [25, 
496]. Put together, single-cell RNA sequencing and other 
‘omics techniques combined with electron microscopy (par-
ticularly via advanced immunohistochemical staining and 
three-dimensional ultrastructural imaging) can bring the 
field closer to understanding microglial functional dynamics 
at steady-state and the effects of pharmacological interven-
tions. Overall, technical advancements made in microglial 
research will accelerate pharmacological research looking 
to target microglia in order to influence the brain’s immune 
status and neuronal plasticity throughout the CNS.

Altogether, this review emphasizes the importance of 
investigating the involvement of microglia in neuropharma-
cology and has outlined several demonstrated or theoretical 
pathways of microglial pharmacology that can be leveraged 
in developing novel drug therapies for a wide variety of 
CNS disorders.
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immunostaining only was used to assess microglial inflam-
matory status [492]. Further analysis of microglial mor-
phology or changes in other immunomarkers (e.g., CD68, 
Cd11b) may provide additional valuable understanding 
of microglial activity following this treatment. It can be 
hypothesized that psychedelic S1R agonists could simul-
taneously promote hippocampal neurogenesis and reduce 
inflammation, thus improving the pathology of depression, 
anxiety, substance use and related disorders. However, other 
findings from the same study provide a note of caution: 
although direct injection of DMT (without Aβ oligomer-
injection) decreased inflammation and microglial density, 
DMT also impaired hippocampal neurogenesis. The authors 
speculated that this detrimental effect was mediated through 
5-HT2A receptor stimulation of DMT, as PRE-084 mediated 
pro-neurogenic as well as anti-inflammatory effects [492]. 
Thus, although DMT and other psychedelics may enhance 
the treatment of psychiatric disorders by increasing BDNF, 
promoting neurogenesis and modulating inflammation, 
further research is necessary to differentiate their molecu-
lar mechanisms of action with regard to microglia, and 
potentially to develop compounds or strategies for modu-
lating microglial function in a more specific manner. Over-
all, the role of psychedelics, anesthetics, and ketamine in 
reducing microglial QA production support their proposed 
neuroprotective and anti-aging effects. While the complex 
relationship between the ‘psychoplastogens’, microglia, 
and aging is still largely unexplored, we hypothesize that as 
these drugs continue to be investigated for their anti-aging 
and pro-cognitive effects in the future, their modulation of 
microglial function will emerge as a central mechanism.

Advances in Microglial Research Methodology

As the importance of microglia in neuropharmacological 
research and future therapeutic options continue to grow 
in recognition, accurate and effective research methods 
and techniques for studying microglia are crucial. As an 
important note in microglial research methodology, anes-
thetics and ketamine are commonly used in the euthanasia 
process in animal research and is a factor to keep in mind 
when studying minute changes in the CNS, post-mortem. 
It is likely that, given the immediate, established effects of 
these drugs on microglia, there will be a swift change in 
cellular activity induced by these drugs which may have an 
impact on the morphology, location, gene expression, and 
inflammatory status of these cells and surrounding tissue 
which may confound some research findings. One example 
of this, Venturino and colleagues demonstrated that treat-
ment with the ketamine/xylazine/phenothiazine tranquil-
izer acepromazine led to an immediate, significant increase 
in colocalization of perineuronal nets with microglia, and 
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