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ARTICLE HIGHLIGHTS

� Why did we undertake this study?
Diabetes is a well-established risk factor for dementia, but the role of (pre)diabetes in the early stages of brain aging is unclear.

� What are the specific questions we wanted to answer?
Is (pre)diabetes related to accelerated brain aging? Can this be attenuated by healthy lifestyle?

� What did we find?
Hyperglycemia, including diabetes and even prediabetes, is associated with accelerated brain aging, but this may be attenuated by physical
activity and avoidance of smoking and heavy drinking.

� What are the implications of our findings?
The results highlight the potential of modifiable lifestyle behaviors to compensate against the detrimental influence of (pre)diabetes on brain health.
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OBJECTIVE

Diabetes is a well-known risk factor for dementia. We investigated the associa-
tion between (pre)diabetes and older brain age and whether this can be attenu-
ated by modifiable lifestyle behaviors.

RESEARCH DESIGN AND METHODS

The study included 31,229 dementia-free adults from the UK Biobank between the
ages of 40 and 70 years. Glycemic status (normoglycemia, prediabetes, or diabetes)
was ascertained based on medical history, medication use, and HbA1c measured at
baseline. Information on cardiometabolic risk factors (obesity, hypertension, low
HDL, and high triglycerides) and lifestyle behaviors (smoking, drinking, and physical
activity) was also collected at baseline. Participants underwent up to two brain MRI
scans over 11 years of follow-up. Brain age was estimated using a machine learning
model based on 1,079 brain MRI phenotypes and used to calculate brain age gap
(BAG; i.e., brain age minus chronological age).

RESULTS

At baseline, 13,518 participants (43.3%) had prediabetes and 1,149 (3.7%) had di-
abetes. Prediabetes (b = 0.22 [95% CI 0.10, 0.34]) and diabetes (2.01 [1.70, 2.32])
were both associated with significantly higher BAG, and diabetes was further as-
sociated with significant increase in BAG over time (0.27 [0.01, 0.53]). The associ-
ation between (pre)diabetes and higher BAG was more pronounced in men and
in people with two or more cardiometabolic risk factors. In joint exposure analy-
sis, having a healthy lifestyle (i.e., no smoking, no heavy drinking, and high physi-
cal activity) significantly attenuated the diabetes-BAG association.

CONCLUSIONS

Diabetes and even prediabetes are associated with accelerated brain aging, espe-
cially among men and people with poor cardiometabolic health. However, a
healthy lifestyle may counteract this.

Type 2 diabetes (hereafter, diabetes) is a well-established risk factor for cognitive im-
pairment and has been associated with approximately double the risk of dementia
(1–3). In brain MRI studies, diabetes has been related to global brain atrophy, in-
creased burden of small-vessel disease, and microstructural lesions before the onset
of cognitive symptoms (4). While prediabetes has been related to more modest levels
of many of the cerebrovascular and neurodegenerative abnormalities associated with
overt diabetes in some MRI studies (5,6), the association of prediabetes with cognitive
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decline and dementia remains controver-
sial, with previous studies reporting con-
flicting results (7–10).
Recently, modeling methods have been

introduced to estimate brain age based on
MRI features such as volume loss, cortical
thinning, white matter degradation, loss
of gyrification, and ventricle enlargement
(11). Brain age gap (BAG) reflects the dif-
ference between brain age and chronolog-
ical age. Having an older-appearing brain
for one’s chronological age—that is, a high
BAG—can indicate deviation from the nor-
mal aging process and has been linked to
mortality and increased risk of cognitive
decline and dementia (11). Early detection
of accelerated brain aging could support
timely identification and intervention for
people who aremost at risk for developing
dementia.
A growing body of cross-sectional stud-

ies has linked diabetes to brain age that is
between 0.85 and 4.6 years older than
chronological age (12–18), but longitudi-
nal evidence on the association between
diabetes and changes in brain age is
lacking, and the relationship between
prediabetes and brain age has not been
explored. Given the heterogeneity of
the diabetes population, another impor-
tant consideration is how clinically rele-
vant factors, such as sex, comorbidities,
and lifestyle behaviors, might influence
the association between (pre)diabetes
and brain age. A variety of lifestyle be-
haviors, including physical activity and
smoking/alcohol avoidance, have been re-
lated to decelerated brain aging (12,16,
19,20), but whether a healthy lifestyle can
counteract the detrimental influence of
(pre)diabetes is unknown.
To address these questions, we com-

prehensively investigated the relationship
between hyperglycemia and brain aging,
leveraging detailed neuroimaging data
from the UK Biobank covering six different
MRI modalities in >30,000 middle-aged
and older adults. Specifically, we aimed
to 1) examine the cross-sectional and
longitudinal relationship between (pre)-
diabetes and BAG; 2) explore the role of
sex and cardiometabolic risk factors in
these associations; and 3) investigate
whether a healthy lifestyle, characterized
by high physical activity and abstention
from smoking and heavy drinking, can at-
tenuate the influence of (pre)diabetes on
BAG.

RESEARCH DESIGN AND METHODS

Study Design and Population
The UK Biobank is an ongoing longitudi-
nal study including >500,000 adults be-
tween the ages of 40 and 70 from across
the United Kingdom (21). Between 2006
and 2010, participants took part in a
baseline examination at 1 of 22 assess-
ment centers across the country consist-
ing of physical and medical assessments
and a series of questionnaires about soci-
odemographic information and lifestyle
behaviors. Approximately 9 years later,
between 2014 and 2020, >40,000 partic-
ipants additionally underwent a brain
MRI scan. Beginning in 2019, participants
were invited to return for a follow-up
brain MRI scan.

Selection of the study population is il-
lustrated in Supplementary Fig. 1. The
analysis was restricted to 34,296 partici-
pants who underwent brain MRI scans
and had complete information on all avail-
able imaging-derived phenotypes (IDPs).
We then excluded 630 participants with
chronic neurological disorders (including
dementia) at the time of the MRI scan
(see Supplementary Table 1 for details),
15 with type 1 diabetes, and 2,422 with
missing information on baseline HbA1c,
leaving a sample of 31,229, including
2,414 who underwent two MRI scans.

All data collection procedures have
been approved by the UK National Re-
search Ethics Service (Ref 11/NW/0382)
and the use of the data for the present
analyses were additionally approved by
the Regional Ethical Review Board in
Stockholm, Sweden (Ref 2024-00520-
01). All participants provided informed
consent at baseline.

Assessment of Prediabetes and
Diabetes
Baseline diabetes and prediabetes were
defined according to the American Dia-
betes Association standard diagnostic
criteria (22). Participants were classified
as having diabetes if they had any one
of the following: medical record of dia-
betes, use of glucose-lowering medica-
tions, self-reported history of diabetes,
or HbA1c $6.5% (see Supplementary
Table 2 for field codes). Among diabe-
tes-free participants, prediabetes was
defined as HbA1c 5.7% to 6.4%, and
normoglycemia was defined as HbA1c
<5.7%. Diabetes was further categorized
according to level of glycemic control:

<7.0% (well-controlled), $7.0 to <8.0%
(moderately controlled), or$8.0% (poorly
controlled) (23).

Acquisition of Brain IDPs
Brain MRI scans were conducted using
a Siemens Skyra 3T scanner. Detailed
descriptions of the UK Biobank brain
MRI image acquisition and processing
protocols have been previously pub-
lished (24,25) and are summarized in
Supplementary Table 3.

A total of 1,079 IDPs were extracted
across six MRI modalities: 165 from
T1-weighted MRI, 1 from T2-fluid attenu-
ated inversion recovery (FLAIR), 14 from
T2*, 675 from diffusion MRI, 210 from
resting-state functional MRI (fMRI), and
14 from task fMRI. Briefly, T1-weighted
imaging provides information on the vol-
ume and thickness of different brain re-
gions, T2-FLAIR imaging detects white
matter hyperintensities (reflecting vascu-
lar brain damage), T2* detects brain mi-
crobleeds, diffusion MRI assesses white
matter microstructural integrity, resting-
state fMRI measures brain activity at rest
for assessment of intrinsic functional
connectivity of neural networks, and
task fMRI does so when the participant
is performing a task or experiencing a
sensory stimulus (in this case, a face/
shapes matching task) (24). A full list of
all 1,079 IDPs is provided in Supple-
mentary Material.

Machine Learning-Based Estimation
of Brain Age and BAG
The procedure for brain age estimation
has been described in previous studies
(26,27). A detailed description is avail-
able in the Supplementary Material, and
the workflow is illustrated in Supple-
mentary Fig. 2.

Briefly, from the entire sample of par-
ticipants with complete brain MRI data
(N = 34,296), we first identified 4,355
healthy individuals between the ages of
40 and 70 with no ICD-10 diagnoses
and who were free from self-reported
long-term illness, disability, or frailty (Field
ID: 2188) and self-reported fair or poor
health status (Field ID: 2178) (Supple-
mentary Table 4). These participants were
randomly allocated in a 4:1 ratio to a
training set (n = 3,484) and a validation
set (n = 871). Next, all 1,079 IDPs were Z
standardized and nine machine learning
models were trained for modeling brain
age in the training set. These included
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least absolute shrinkage and selection
operator regression (LASSO), eXtreme
gradient boosting, and support vector re-
gression, which were combined with three
possible feature selection strategies (no
feature selection, FeatureWiz, or recursive
feature elimination with cross validation).
Bayesian optimization was performed to
optimize the hyperparameters of all nine
models through 100 epochs (Supp-
lementary Tables 5 and 6). Once opti-
mized, all nine models were applied to the
validation set so that their performance
could be compared. Ultimately, the LASSO
model without feature selection achieved
the lowest mean absolute error (Supple-
mentary Table 7) and was therefore cho-
sen to predict brain age for the entire
sample. Of the 1,079 IDPs, 285 contrib-
uted significantly to the brain age estimate
and are listed in Supplementary Table 8.

Next, because brain age tends to be
overpredicted in younger individuals
and underpredicted in older individuals,
we corrected brain age estimates for age
bias as follows (28,29): brain agecorrected
= [brain ageoriginal – b/a], where coeffi-
cients a and b are the slope and inter-
cept of brain agetraining set = a ×
chronological agetraining set 1 b (Supp-
lementary Fig. 3).

Finally, BAG, which represents the dif-
ference between an individual’s brain age
and their chronological age, was calcu-
lated as BAG = brain age – agetime of MRI.
Positive values for BAG indicate a brain
that is older (i.e., less healthy) and nega-
tive values for BAG indicate a brain that
is younger (i.e., more healthy) than ex-
pected based on the individual’s chrono-
logical age.

Assessment of Covariates

Sociodemographic Factors

Education (college/university vs. not) was
dichotomized based on the highest level
of formal education attained. Socioeco-
nomic status (SES) was assessed using
the Townsend deprivation index, a mea-
sure of neighborhood-level socioeconomic
deprivation based on the prevalence of
unemployment, household overcrowding,
car nonownership, and home nonowner-
ship in a given postcode of residence.

Cardiometabolic Risk Factors

Cardiometabolic risk factor burden was
operationalized in terms of the components
of the metabolic syndrome (MetS) (30).

BMI was calculated using height and
weight measurements from the base-
line examination and classified as un-
derweight (<20 kg/m2), normal weight
($20 to<25 kg/m2), overweight ($25 to
<30 kg/m2), or obese ($30 kg/m2). Hy-
pertension was defined based on self-
report, blood pressure measurement (sys-
tolic $140 mmHg, diastolic $90 mmHg),
or antihypertensive medication use. HDL
cholesterol and triglycerides were mea-
sured from blood samples collected at
baseline. A score reflecting cardiometa-
bolic risk factor burden (ranging from 0 to
4) was generated according to the total
number of MetS components present, in-
cluding obesity, hypertension, low HDL
(<40 mg/dL [1.03 mmol/L] for men and
<50 mg/dL [1.29 mmol/L] for women),
and high triglycerides ($150 mg/dL
[1.7 mmol/L]). (Notably, the fifth MetS
component, hyperglycemia, was not in-
cluded because it was already consid-
ered as the exposure in all analyses.)

Lifestyle Behaviors

Information was collected on three read-
ily modifiable lifestyle behaviors: smok-
ing, alcohol drinking, and physical activity.
Smoking status was categorized as non-
smoker, former smoker, or current smoker
according to self-report. Intake of various
alcoholic beverages was self-reported and
converted into U.K. alcohol units (1 unit =
8 g ethanol) (31). Alcohol consumption
was categorized as nondrinker, light/mod-
erate drinking (#14 units/week), or heavy
drinking (>14 units/week) according to
current U.K. guidelines on alcohol con-
sumption for both men and women (32).
Physical activity was measured using the
International Physical Activity Question-
naire. Participants were classified as inac-
tive (<600 MET-min/week), moderate
(600 to <3,000 MET-min/week), or ac-
tive ($3,000 MET-min/week); 600 MET-
min/week is equivalent to the World
Health Organization recommendation of
150 min of moderate-intensity or 75 min
of vigorous physical activity per week
(33). An optimal lifestyle was defined as
never smoking, no or light/moderate al-
cohol consumption, and high physical
activity.

Alzheimer Disease-Related Polygenic Risk

Score

Alzheimer disease (AD)-related polygenic
risk score (PRSAD) was obtained from the
UK Biobank’s Standard PRS Set (34). Briefly,

PRSAD represents the Z-standardized sum
of each participant’s number of AD-related
alleles (including the well-known APOE e4
polymorphism) weighted by the strength
of each allele’s association with AD (34).

Statistical Analysis
Baseline characteristics of the study par-
ticipants by glycemic status were as-
sessed using x2 tests for categorical
variables and one-way ANOVA for con-
tinuous variables.

Linear regression models were used to
estimate b-coefficients and 95% CIs for
the association between glycemic status
at baseline and BAG at the time of brain
MRI. Least-squares means of BAG in the
normoglycemia, prediabetes, and diabe-
tes groups were additionally estimated
from the margins of the linear regression
models. Similar analyses were conducted
using HbA1c as a continuous variable. Re-
stricted cubic splines with three knots at
fixed percentiles of the HbA1c distribution
(10th, 50th, and 90th) were used to
model the possible nonlinear association
between HbA1c and BAG. Among partici-
pants who underwent two brain MRI
scans, linear mixed-effects models were
used to estimate b-coefficients and 95%
CIs for the association between glycemic
status and changes in BAG between the
first and second scans. The fixed effect in-
cluded baseline glycemic status, follow-up
time (in years), and their interaction. The
random effect included random intercept
and slope, allowing individual differences
in BAG to be reflected at baseline and
across follow-up.

Next, stratified linear regression mod-
els were used to explore the role of sex
(women vs. men) and cardiometabolic
health (0–1 vs. $2 risk factors) in the as-
sociation between glycemic status and
BAG. Finally, we performed joint exposure
analysis by incorporating a six-category in-
dicator variable that combined glycemic
status (normoglycemia, prediabetes, or di-
abetes) and lifestyle (optimal or nonopti-
mal) into the linear regression model.
Interactions between glycemic status and
sex, cardiometabolic risk factor level, and
lifestyle were assessed by incorporating
the cross-product term into the models.

All models were first basic adjusted for
sociodemographic factors (i.e., age, sex,
education, and SES), followed by further
adjustment for number of cardiometabolic
risk factors, lifestyle behaviors (i.e.,
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smoking, alcohol consumption, and
physical activity), and PRSAD. Missing
values for covariates were imputed using
fully conditional specification, with esti-
mates pooled from five iterations.
In sensitivity analysis, we repeated the

main analyses 1) using BAG calculated
based on brain age estimates from other
candidate machine learning models; 2) us-
ing nonimputed data; 3) after adding an
additional covariate for brain MRI assess-
ment center; 4) after excluding participants
with possible prodromal/undiagnosed de-
mentia (i.e., incident dementia during
follow-up; n = 42) or possible cognitive im-
pairment (i.e., baseline cognitive test
scores<25th percentile; n = 7,806) tomin-
imize the possibility of reverse causality;
and 5) using diabetes status defined at the

time of brain MRI scan to address the pos-
sibility of changes in glycemic status since
baseline. All analyses were performed
using Stata SE 16.0 software (StataCorp,
College Station, TX). P values <0.05 were
considered statistically significant.

Data and Resource Availability
Requests for access to the UK Biobank
data can be made here: https://www.
ukbiobank.ac.uk/enable-your-research/
apply-for-access.

RESULTS

Baseline Characteristics
Baseline characteristics of the 31,229
study participants (mean age 54.8 ± 7.5;
53.0% female) are summarized in Table 1.

At baseline, 13,518 participants (43.3%)
had prediabetes and 1,149 (3.7%) had di-
abetes. Compared with participants with
normoglycemia, those with (pre)diabetes
were more likely to be older, male, have a
lower education level and SES, be physi-
cally inactive, and have cardiometabolic
risk factors. The study sample was com-
paratively younger and had greater educa-
tional attainment, higher SES, and a more
favorable cardiometabolic risk profile
compared with the UK Biobank popula-
tion as a whole (Supplementary Table 9).

Prediabetes, Diabetes, and BAG
Compared with normoglycemia, predia-
betes (b = 0.22 [95% CI 0.10, 0.34]) and
diabetes (b = 2.01 [1.70, 2.32]) were

Table 1—Baseline characteristics of the 31,229 study participants by glycemic status

By glycemic status

Characteristics
Full sample
(N = 31,229)

Normoglycemia
(n = 16,562)

Prediabetes
(n = 13,518)

Diabetes
(n = 1,149) P value

Age, years
At baseline 54.8 ± 7.5 53.1 ± 7.5 56.7 ± 7.1* 57.5 ± 7.0* <0.001
At time of brain MRI 63.7 ± 7.6 62.0 ± 7.6 65.6 ± 7.2* 66.4 ± 7.2* <0.001

Female sex 16,556 (53.0) 9,015 (54.4) 7,105 (52.6) 436 (38.0) <0.001

College/university-educated 14,503 (46.6) 8,006 (48.5) 6,038 (44.8) 459 (40.2) <0.001

Townsend deprivation index �1.9 ± 2.7 �1.9 ± 2.7 �2.0 ± 2.7 �1.5 ± 2.9* <0.001

BMI, kg/m2 26.5 ± 4.2 25.9 ± 3.8 26.9 ± 4.3* 30.2 ± 5.5* <0.001

Underweight (<20) 799 (2.6) 490 (3.0) 302 (2.2) 7 (0.6) <0.001
Normal (20–25) 11,651 (37.3) 6,870 (41.5) 4,613 (34.2) 168 (14.6)
Overweight (25–30) 13,382 (42.9) 7,020 (42.4) 5,910 (43.8) 452 (39.4)
Obese ($30) 5,367 (17.2) 2,163 (13.1) 2,683 (19.9) 521 (45.4)

Hypertension 6,594 (21.1) 2,832 (17.1) 3,197 (23.7) 565 (49.2) <0.001

HDL, mg/dL 57.2 ± 14.6 58.1 ± 14.5 57.0 ± 14.5* 48.6 ± 13.2* <0.001

Triglycerides, mg/dL 144.5 ± 84.0 135.0 ± 79.3 152.5 ± 85.3* 186.4 ± 108.8* <0.001

HbA1c, % 5.7 ± 0.5 5.4 ± 0.2 5.9 ± 0.2* 7.1 ± 1.0* <0.001

Smoking <0.001

Nonsmoker 19,036 (61.1) 10,446 (63.2) 8,007 (59.4) 583 (50.8)
Former smoker 10,258 (32.9) 5,241 (31.7) 4,537 (33.6) 480 (41.8)
Current smoker 1,873 (6.0) 847 (5.1) 941 (7.0) 85 (7.4)

Alcohol consumption <0.001

Nondrinker 1,970 (7.2) 886 (6.0) 983 (8.4) 101 (10.4)
Low/moderate drinking 11,785 (42.9) 6,237 (42.4) 5,134 (43.7) 414 (42.4)
Heavy drinking 13,705 (49.9) 7,599 (51.6) 5,645 (48.0) 461 (47.2)

Physical activity <0.001

Low 4,880 (18.1) 2,575 (17.8) 2,049 (17.7) 256 (26.0)
Moderate 11,320 (41.9) 6,022 (41.7) 4,896 (42.3) 402 (40.8)
High 10,801 (40.0) 5,835 (40.4) 4,638 (40.0) 328 (33.3)

APOE e4 carrier 7,322 (27.5) 3,992 (28.1) 3,105 (27.1) 225 (23.8) 0.008

PRSAD 0.04 ± 0.99 0.05 ± 0.99 0.04 ± 0.98 �0.04 ± 0.96* 0.026

Data are presented as means ± SD or n (%). Missing data: 92 for education level; 28 for Townsend deprivation index; 30 for BMI; 15 for hy-
pertension; 4,030 for HDL; 1,406 for triglycerides; 62 for smoking status; 3,769 for alcohol consumption; 4,228 for physical activity level;
4,638 for APOE e4 status; and 242 for PRSAD. *Indicates significant (P value <0.05) pairwise comparison (reference group = normoglycemia).
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associated with significantly higher BAG
(Table 2). Specifically, brain age was on
average 0.50 years older than chronologi-
cal age among people with prediabetes
and 2.29 years older than chronological
age among people with diabetes (Fig. 1A).
BAG rose as high as 4.18 years among
people with poorly controlled diabe-
tes (HbA1c $8.0%). Consistent with
this, HbA1c as a continuous variable was
associated with significantly higher BAG
(b = 0.77 [0.65, 0.90]), and the restricted
cubic spline analysis showed a strong in-
crease in BAG with higher levels of HbA1c
(Fig. 1B).

In an exploratory longitudinal analysis
among the 2,414 participants (7.7%)
who underwent two brain MRI scans,
diabetes was associated with a 0.27-
year annual increase in BAG (Table 2
and Fig. 1C). No significant relationship
was detected between prediabetes and
changes in BAG, although HbA1c as a
continuous variable was associated with
a significant increase in BAG (b = 0.13
[95% CI 0.03, 0.23]).

Sex- and Cardiometabolic
Burden–Stratified Analyses
In stratified analyses (Fig. 2A and Supp-
lementary Tables 10 and 11), the associa-
tion between diabetes and higher BAG
was more pronounced in men compared
with women (b = 2.32 [95% CI 1.90,
2.74] vs. 1.51 [1.04, 1.99]) and people
with a higher burden of cardiometabolic
risk factors (0–1 risk factors: 1.91 [1.45,

2.36]; $2 risk factors: 2.20 [1.74, 2.66]).
The same was true for prediabetes.
Specifically, brain age was on average
0.75 years older than chronological age
among men with prediabetes, compared
with only 0.27 years older for women.
Moreover, BAG rose to 2.63 years for men
with diabetes compared with 1.76 years
for women. Similarly, among individu-
als with two or more cardiometabolic
risk factors, prediabetes and diabetes
were associated with an average BAG
of 1.32 and 3.08 years compared with
0.24 and 1.96 years, respectively, among
their counterparts with a lower cardiome-
tabolic risk factor burden.

Significant interactions were detected
between glycemic status and both sex
and cardiometabolic burden with re-
spect to BAG (P < 0.001 for all).

Role of a Healthy Lifestyle
In joint exposure analysis, an optimal
healthy lifestyle (i.e., nonsmoking, no or
light/moderate drinking, and high physi-
cal activity) significantly attenuated the
association between diabetes and BAG
(Fig. 2B and Supplementary Table 12).
Brain age was on average only 0.78 years
older than chronological age among peo-
ple with diabetes and an optimal lifestyle
compared with 2.46 years older with a
nonoptimal lifestyle. Therefore, healthy
lifestyle was related to a 1.68-year reduc-
tion in BAG. More modest reductions in
BAG were seen between individuals with
normoglycemia and prediabetes and an

optimal vs. nonoptimal lifestyle, respectively,
although the difference for individuals
with prediabetes was not statistically
significant. A significant interaction was
detected between glycemic status and
lifestyle (P = 0.04).

Sensitivity Analyses
Sensitivity analyses are described in detail
in the Supplementary Material. Overall,
similar results were obtained when we re-
peated the analyses using BAG calculated
based on brain age estimates from other
candidate machine learning models (Sup-
plementary Table 13), using nonimputed
data (Supplementary Table 14), after ad-
ditionally adjusting for brain MRI assess-
ment center (Supplementary Table 15),
after excluding 42 participants with possible
prodromal/undiagnosed dementia (Supp-
lementary Table 16), and after excluding
7,806 participants with possible cognitive
impairment (Supplementary Table 16).
Moreover, 558 people with normoglycemia
or prediabetes transitioned to diabetes dur-
ing the �9-year period between baseline
and the first MRI scan (Supplementary
Fig. 4), but results remained consistent
using diabetes status defined at the time
of this scan (Supplementary Table 17).

CONCLUSIONS

In this large-scale neuroimaging study, dia-
betes and even prediabetes were related
to significantly older brain age in relation
to chronological age, and diabetes was fur-
ther associated with significant widening

Table 2—Cross-sectional and longitudinal associations between glycemic status and BAG: results from linear regression
and linear mixed-effects models

BAG

Basic adjusted Multiadjusted

Glycemic status Participants (n) b (95% CI) P value b (95% CI) P value

Cross-sectional
Normoglycemia 16,562 Reference Reference
Prediabetes 13,518 0.32 (0.20, 0.44) <0.001 0.22 (0.10, 0.34) <0.001
Diabetes 1,149 2.40 (2.10, 2.71) <0.001 2.01 (1.70, 2.32) <0.001

HbA1c <7.0% 671 1.81 (1.42, 2.21) <0.001 1.43 (1.04, 1.83) <0.001
HbA1c $7.0% to <8.0% 303 2.62 (2.04, 3.20) <0.001 2.19 (1.61, 2.77) <0.001
HbA1c $8.0% 175 4.29 (3.53, 5.05) <0.001 3.90 (3.15, 4.66) <0.001

HbA1c (continuous) 0.95 (0.82, 1.08) <0.001 0.77 (0.65, 0.90) <0.001

Longitudinal

Normoglycemia × time 1,354 Reference Reference
Prediabetes × time 982 �0.03 (�0.12, 0.07) 0.597 �0.03 (�0.12, 0.07) 0.596
Diabetes × time 78 0.27 (0.01, 0.53) 0.045 0.27 (0.01, 0.53) 0.045
HbA1c (continuous) × time 0.13 (0.03, 0.23) 0.012 0.13 (0.03, 0.23) 0.012

Basic-adjusted models included age, sex, education, and socioeconomic status. Multiadjusted models additionally included cardiometabolic
risk factor burden, smoking status, alcohol drinking, physical activity, and PRSAD.
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of the gap between brain and chronologi-
cal age over time. These associations
were more pronounced in men and
people with poorer cardiometabolic
health but may be counteracted with a
healthy lifestyle characterized by physi-
cal activity and abstention from smoking
and heavy drinking.
Diabetes was associated with a BAG

of 2.29 years in the current study, con-
sistent with previous reports in which
diabetes has been related to a BAG
between 0.85 and 4.6 years (12–16).
Drawing on the >2,000 participants in
our study who underwent two brain
MRI scans, we further determined that
diabetes was associated with a 0.27-year
annual increase in BAG over time, a
compelling signal that diabetes is related

not only to older brain age but also to
an accelerated pace of brain aging. In
line with this, a small study (n = 25) ex-
ploring the longitudinal relationship be-
tween diabetes and brain aging reported
that BAG widened by an estimated
0.2 years annually among people with
diabetes (12).

Notably, whereas most previous studies
estimated brain age used only T1-weighed
imaging (12–15,17,18), ours leveraged in-
formation across six brain MRI modalities
(T1-weighted imaging plus T2-FLAIR, T2*,
diffusion MRI, resting-state fMRI, and task
fMRI). A recent study also conducted
using UK Biobank data concluded that
whereas T1-weighted imaging is the MRI
modality with the highest independent ac-
curacy for brain age estimation, the best

performance is achieved when multiple
MRI modalities are combined (16).

Owing to our use of multimodal brain
MRI data to estimate brain age, combined
with the large sample size, we were able to
detect a modest but highly statistically sig-
nificant association between prediabetes
(P < 0.001) and higher BAG. In light of
conflicting findings on the relationship
between prediabetes and cognitive im-
pairment and dementia (7–10), our re-
sults provide compelling evidence that
prediabetes may accelerate brain aging
during the very earliest stages of demen-
tia development. Given the substantial
and growing prevalence of prediabetes—
estimated at �9% of the global popula-
tion (35)—even a modest effect of predi-
abetes on brain health could make a

Figure 1—Relationship between glycemic status and BAG. A: Least-squares means and SDs of BAG in participants with normoglycemia, prediabetes, and di-
abetes. B: The relationship between HbA1c (as a continuous variable) and BAG is modeled using restricted cubic splines. The red line and red shaded area
represent the least-squares means and 95% CIs of BAG as a function of baseline HbA1c. Gray bars represent the distribution of HbA1c in the study popula-
tion. C: The relationship between glycemic status and changes in BAG is modeled using linear mixed-effects models. All models were adjusted for age, sex,
education, SES, cardiometabolic risk factor burden, smoking status, alcohol drinking, physical activity, and PRSAD.
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substantial difference at the population
level. Encouragingly, prediabetes is a re-
versible state, and population-based stud-
ies have demonstrated that it is more
common for people with prediabetes to
regress to normoglycemia than progress
to overt diabetes (36,37). Potential bene-
fits for brain health could be yet another
motivation to tighten glycemic control
during this critical window.

Considering the heterogeneity of the
diabetes population, we additionally

investigated the role of a variety of other
biological factors in the relationship be-
tween (pre)diabetes and brain age. In strat-
ified analyses, the association between
diabetes and higher BAG was more pro-
nounced in men compared with women
(2.63 vs. 1.76 years) and people with two
or more as opposed to zero or one cardio-
metabolic risk factors (3.08 vs. 1.96 years).
The prediabetes-BAG association was also
stronger in men (0.75 vs. 0.27 years) and
people with a higher cardiometabolic risk

factor burden (1.32 vs. 0.24 years). Two
previous studies have also reported a
stronger relationship between brain age
and diabetes among men (13,15), and the
stronger diabetes-BAG association in in the
context of a poorer cardiometabolic health
is generally consistent with what has been
observed for the diabetes-dementia as-
sociation (2,3). These results highlight
the complex interplay between hyper-
glycemia, sex, and cardiometabolic fac-
tors on brain health and underscore the

Figure 2—Role of sex, cardiometabolic risk factor burden, and healthy lifestyle in the association between glycemic status and BAG. A: Least-
squares means and SDs of BAG among participants with normoglycemia, prediabetes, and diabetes, stratified by sex and cardiometabolic burden.
Significant interactions were detected between glycemic status and sex (P < 0.001) and between glycemic status and cardiometabolic burden
(P < 0.001). Models were adjusted for age, education, SES, cardiometabolic risk factor burden, smoking status, alcohol drinking, physical activity,
and PRSAD as well as sex or cardiometabolic risk factor burden, depending on the stratification factor. B: b-Coefficients for the joint effect on glyce-
mic status and lifestyle on BAG. A significant interaction was detected between glycemic status and healthy lifestyle (P = 0.04). Models were ad-
justed for age, sex, education, SES, cardiometabolic risk factor burden, and PRSAD. Note: The reference group was changed to (pre)diabetes and
optimal lifestyle when assessing whether lifestyle significantly modified the (pre)diabetes-BAG association.
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importance of identifying populations
that may benefit most from preventa-
tive interventions.
Although lifestyle behaviors such as a

healthy diet, smoking/alcohol avoidance,
physical activity, and social engagement
have been associated with younger brain
age (12,16,19,20), a relevant and so-far
unexplored question is whether a healthy
lifestyle can counteract the damaging in-
fluence of existing risk factors, such as di-
abetes, on brain aging. In our study, a
lifestyle characterized by high physical ac-
tivity and avoidance of smoking and heavy
drinking significantly attenuated the asso-
ciation between diabetes and higher BAG.
These results provide the encouraging
suggestion that adoption of these healthy
lifestyle behaviors could improve brain
health among people with diabetes, al-
though interventional studies are war-
ranted to verify this hypothesis. Our
findings are consistent with previous
studies highlighting the mitigating role
of lifestyle behaviors in the association be-
tween diabetes and dementia (38,39) and
emphasize the significance of a healthy life-
style for not only cardiometabolic health
but also the brain.
There are several potential biological

pathways through which (pre)diabetes
may impact brain health. Hyperglycemia,
the defining pathophysiological feature
of diabetes, can promote endothelial
dysfunction, oxidative stress, systemic
inflammation, and the accumulation of
advanced glycation end products (1).
Together these contribute to disruption
of blood-brain barrier permeability (ex-
posing the brain to potentially toxic sub-
stances, leading to abnormal neuronal
activity), demyelination and loss of axons
(leading to brain atrophy and disruptions
in neurotransmitter signaling), and alter-
ations in Ca21signaling (leading to ex-
citotoxicity and disruptions in gene ex-
pression) (1). Additionally, the micro- and
macrovascular complications of diabetes
can contribute to brain atherosclerosis and
cerebrovascular pathologies thatmay lower
the threshold for neurodegeneration (1).
Finally, the insulin resistance that character-
izes diabetes has been linked to AD-related
processes, including amyloid-b generation,
t-hyperphosphorylation, and impaired
amyloid-b clearance (1). A healthy lifestyle
may enhance cardiovascular and meta-
bolic health, thereby minimizing the im-
pact of hyperglycemia, insulin resistance,
and vascular damage.

Strengths of this study include the large
sample size and the use of multimodal
brain MRI data to estimate brain age. How-
ever, some limitations should be acknowl-
edged. First, healthy volunteer bias in the
UK Biobank could limit the generalizability
of our findings and may have contributed
to an underestimation of the observed as-
sociations. Selection bias may be stronger
in our sample because it was restricted to
participants who underwent a brain MRI
scan, a comparatively younger and more
cardiometabolically healthy subgroup
(Supplementary Table 9).

Second, diet could not be considered
in the healthy lifestyle construct due to
a high proportion of missing data (35%);
additional analyses integrating diet into
the optimal lifestyle measure are pre-
sented in Supplementary Table 18.

Third, there is the possibility of reverse
causality insofar as having an older brain
may contribute to the development of
(pre)diabetes by making it more difficult
to manage medical conditions and ad-
here to a healthy lifestyle. However, re-
sults remained consistent in sensitivity
analyses excluding participants with pos-
sible cognitive impairment or prodromal
dementia (Supplementary Table 16), sug-
gesting that reverse causality is unlikely
to have a major impact on our findings.

Additionally, misclassification of base-
line glycemic status may have occurred
because HbA1c is less sensitive than alter-
native measures such as fasting plasma
glucose or the oral glucose tolerance test
(40). Moreover, because HbA1c was mea-
sured only at baseline, we could not
assess changes in glycemic control or pro-
gression/reversion of prediabetes in rela-
tion to BAG.

Finally, longitudinal data were avail-
able for only 2,414 participants (7.7%).
Repeat collection of brain MRI scans is
still ongoing, presenting an opportunity
for future studies to explore the longitu-
dinal relationship between (pre)diabetes
and brain aging in greater detail.

In conclusion, the current study pro-
vides evidence that hyperglycemia—
including diabetes and even prediabetes—
may contribute to accelerated brain aging.
These associations weremore pronounced
in men and people with poorer cardiome-
tabolic health but were attenuated with a
healthy lifestyle characterized by physical
activity and abstention from smoking and
heavy drinking. Our findings highlight dia-
betes and prediabetes as ideal targets for

lifestyle-based interventions to promote
brain health.
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