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Nutrition has broad impacts on all physiological processes. However,

how nutrition affects human immunity remains largely unknown. Here we
explored theimpact of adietary intervention on both immunity and the
microbiota by performing a post hoc analysis of a clinical trial in which

each of the 20 participants sequentially consumed vegan or ketogenic

diets for 2 weeks (NCT03878108). Using a multiomics approachincluding
multidimensional flow cytometry, transcriptomic, proteomic, metabolomic
and metagenomic datasets, we assessed the impact of each diet, and dietary
switch, on host immunity and the microbiota. Our data revealed that overall,
aketogenic diet was associated with a significant upregulation of pathways
and enrichmentin cells associated with the adaptive immune system. In
contrast, avegan diet had asignificantimpact on the innate immune system,
including upregulation of pathways associated with antiviral immunity.
Both diets significantly and differentially impacted the microbiome and
host-associated amino acid metabolism, with a strong downregulation of
most microbial pathways following ketogenic diet compared with baseline
and vegan diet. Despite the diversity of participants, we also observed
atightly connected network between datasets driven by compounds
associated with amino acids, lipids and the immune system. Collectively,
this work demonstrates that in diverse participants 2 weeks of controlled
dietary interventionis sufficient to significantly and divergently impact

host immunity, which could have implications for precision nutritional
interventions. ClinicalTrials.gov registration: NCT03878108.

Nutrition affects all physiological processes, including those that
regulate our immune system'. The link between nutrition and host
immunity represents animportant opportunity to develop therapeu-
tic nutritional interventions in the context of various disease states,
suchas cancer or chronicinflammatory disorders. In support of alink
between diet and disease state, alow-fat vegan or vegetarian diet has

been previously associated with decreased inflammation, reduced
risk for cardiovascular diseases and reduction in overall mortality**.
Onthe other hand, high-fat, very low-carbohydrate diets (commonly
referred to as ketogenic diets) have been associated with reduced
symptoms in defined types of epilepsy and reduced neuroinflamma-
tion’ ™. However, despite the preventive and therapeutic potential of
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nutritional interventions, how nutrition impacts human immunity
remains largely unknown.

Nutrition canimpact host physiology viathe amount and quality
of fuels but also via the microbiota''®, The microbiota possesses the
ability to reconfigure and alter its function in ways that are believed
to promote host resilience. As such, nutrition playsadominantrolein
shaping the composition and function of the microbiome" >, While the
connection between the microbiota and nutritionis clearly established
inexperimental models, how such asymbiotic dyad influences human
immunity remains largely unexplored.

Inaddition to the paucity of data pertaining to the impact of nutri-
tional intervention on the human immune system, previous studies
have explored responses toonly one diet at atime. Based onthe highly
variable responses of individuals to nutritional interventions® and the
high number of diets consumed, addressing how individuals respond to
different diets remains animportant line of research. Moving forward,
inthe absence of rigorously designed clinical interventions, harnessing
nutrition to shape human health will remain an ongoing challenge.

Here, we explored the impact of dietary interventions on both
immunity and the microbiotainahighly controlled clinical setting, with
each participant sequentially consuming distinct diets for 2 weeks in
randomorder. To our knowledge, this study represents the first multi-
omics study investigating the impact of ketogenic and vegan diets on
humans. Collectively, our results demonstrate a striking remodeling of
hostimmunity and the microbiome and uncovered adivergentimpact
of ketogenic versus vegan diet. The insights derived from this work
may have the potential to improve our understanding of diet-based
therapeutic options for the prevention and treatment of disease.

Dietary intervention alters lymphoid
composition

We performed a highly controlled nutritional study in 20 participants
admittedtotheNationallnstitutesofHealth (NIH) Clinical Center (Fig.1a).
In this cross-over study, a diverse cohort of participants (Extended
DataFig. 1a-d) consumed ad libitum a ketogenic, low-carbohydrate
diet (75.8% fat, 10.0% carbohydrate) and a vegan, low-fat diet (10.3%
fat, 75.2% carbohydrate) for 2 weeks at random, and in different
orders (Fig. 1a). Both diets had acommon foundation of nonstarchy
vegetables (-1 kg per day) with low amounts of digestible carbohydrates
and only minimum amounts of highly processed food. The ketogenic
diet added animal-based products including meat, poultry, fish,
eggs, dairy and nuts. The vegan diet added legumes, rice, root vegeta-
bles, soy products, corn, lentils, peas, whole grains, bread and fruit.
The vegan diet was high in dietary fiber and dietary sugars as com-
pared with the ketogenic diet (Extended Data Fig. 1e). The nutrient
intake of participants between the two diets differed significantly in
their composition (Extended Data Fig. 1f,g). Further, participants on
ketogenic diet consumed higher amounts of fatty acids and amino
acids (Extended Data Fig. 1h,i). Details about the ketogenic and vegan
diets, including photographs of the presented meals, were previously
published®.

Baseline food intake was estimated with the help of a food ques-
tionnaire (Extended Data Fig. 1j). A previous report based on this
cohort confirmed increased ketone bodies in participants consum-
ing a ketogenic diet and demonstrated that participants on a vegan
diet consumed significantly fewer calories compared with those on a
ketogenic diet®. Blood samples were collected at several time points
and cell population composition was assessed via flow cytometry
(n=7), gene expression via bulk RNA sequencing (RNA-seq) (n=6)
and protein composition via SomaLogic (n = 20). Fecal samples were
collected for microbiome metagenomic sequencing (n =10) (Extended
Data Fig. 1k) and metabolomic analysis was performed on both blood
and urine (n=20). Of note, because of sample availability not all assays
could be performed on all participants.

We first assessed the cellular composition of peripheral blood
mononuclear cells (PBMCs) via flow cytometry (Extended Data Figs. 1
and2, Extended Data Tables1and 2 and ref. 26). PBMC analysis focused
on all major immune cell types, except for neutrophils which do not
survive sample processing. As expected, high variability was observed
atbaseline between participants (for example, frequency of naive CD4
T cells ranged from 5% of all CD45" cells to almost 25%) (Fig. 1b).

Notably, change indietitself,independent of diet order, induced
significant changes, including a significant decrease in the level of
naive CD8 T cells and a significant increase in the level of activated
CD4 T cells, effector CD4 T cells and effector CD8 T cells following
both ketogenic/vegan versus baseline diet (Fig. 1c and Extended Data
Fig. 1m). Whether these changes resulted from the shift in diet, or an
abrupt decrease in the consumption of highly processed food which
is often represented in a standard Western diet, remains unclear but
would be of interest for future investigation.

Some distinct changes were also observed following consumption
of each diet, independent of diet order. For instance, we observed a
significantincreaseinthe frequency of activated regulatory T cells and
CD16" natural killer (NK) cells following consumption of a ketogenic
diet compared with vegan diet (Fig.1d and Extended Data Fig. 1n). Fur-
ther, we observed asignificantincreasein the frequency of activated T
helper cells and activated NK cells following vegan diet compared with
ketogenicdiet (Fig.1d and Extended Data Fig.1n). Thus, changesin diet
itself had a significant impact on the host immune system. Further,
both ketogenic and vegan dietsimposed distinct changes in lymphoid
composition and status of activation.

Vegan and ketogenic dietsimpose divergent
immunesignatures

We next performed bulk RNA-seq of whole blood at baseline and
followingdiets. Clustering of highly expressed genes showed marked
differences in the expression of transcripts between all three condi-
tions, as well as between individuals (Extended Data Fig. 3a). Princi-
pal component analysis (PCA) showed that principal component 1
(PC1) captured differences in the transcriptome between partici-
pants explaining 37.38% of variation, whereas PC2 captured differ-
encesbetween the diets explaining 34.45% of variation (Extended Data

Fig.1|NKand T cells are significantly affected by change in diet. a, Schematic
of experimental setup. Twenty participants were splitinto two groups (first
group: 4 females (pink), 6 males (blue); second group: 5 females, 5males), with
one group starting on vegan diet for 2 weeks and then immediately changing
to ketogenic diet (Group A), whereas the other group started with ketogenic
dietand changed to vegan diet (Group B). Data (indicated on the bottom) were
collected directly before first diet as baseline, and at the end of the firstand
second diets. For microbiome samples, data were collected on different days
(refer to Extended Data Fig. 1k for more details). b, Frequency of main cell types
(as frequency of all CD45" live cells) measured by flow cytometry for baseline,
ketogenic and vegan diets shown for each participant. For the gating strategy
for flow cytometry, see Extended Data Table 1and Extended Data Fig. 2. Order
of dietlisted in this panel is the same for all participants independent of their
first diet. Color of individual on top of the plot denotes starting diet (orange,

ketogenic diet; blue, vegan diet). ¢, Fold changes of cell populations whose
frequency significantly changed between ketogenic/vegan diet and baseline
diet (Pvalue < 0.01) (purple, upregulated in vegan/ketogenic diet; green,
upregulated in baseline diet). Dots are scaled by —log,,(P value). Significance
was calculated by two-sided paired ¢-test. d, Fold change of cell populations
whose frequency significantly changed between ketogenic and vegan diets
(Pvalue < 0.01) (purple, upregulated in ketogenic diet; green, upregulated in
vegan diet). Dots are scaled by —log;,(P value). Significance was calculated by
two-sided paired t-test. For gating strategy refer to Extended Data Fig. 2 and ref.
37.Regulatory T (T,) cells, CD127°"CD25"#"CCR4"HLA-DR"; CD16" NK cells,
CD3°CD19°CD14 HLA-DR CD123 CD56'CD16; activated T helper (T,)) cells,
CD3'CD19°CD4'CD8 HLA-DR'CD38"; activated NK cells, CD3"CD19"CD14 HLA-
DR CD123°CD56'CD16*CD57"". BA, baseline; DC, dendritic cells; DN, double
negative; Gr, granulocytes; pp, per person; S, sample.
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Fig. 3b). As expected, most variations resulted from interindividual

We next assessed functional trajectories associated with each

differences; however, dietalso had asignificantimpact onwholeblood  diet. To this end, we performed blood transcription module?” (BTM)

transcriptome.

analysis as well as Hallmark analysis of all genes differentially expressed
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between each diet comparison (Fig. 2a,b and Extended Data Fig. 3¢,d),
with previous diet referring to the diet consumed directly beforehand
(see Methods for more details). This approach uncovered a striking
polarization in overall pathway enrichment between ketogenic and
vegandiets (Fig.2a,b). For example, ketogenic diet was associated with
an upregulation of pathways linked to adaptive immunity, including
T cell activation and enrichment of B cells and plasma cells, as well as
NK cells (Fig. 2a and Extended Data Fig. 3d). As such, oxidative phospho-
rylation, afundamental pathway associated with T cell activation and
memory formation (reviewed inrefs. 28-30), was significantly enriched
inketogenic diet compared with vegan or baseline diet (Fig. 2b).

In contrast, avegan diet was associated with upregulation of path-
ways associated with innate immunity, as well as antiviral responses
(Fig.2a,bandExtended DataFig.3c). Functional analysis further predicted
upregulation of type linterferon signatures and responses (Fig. 2a,b).
The order of diets did not affect transcriptional changes (Extended
DataFig.3c,d). We and others have shown that sensing of endogenous
retroviruses (ERVs) can contribute to host immunity and that changes
in dietary lipids impact ERV expression® *, Indeed, we observed
distinctchangesin ERV expression both betweenindividuals and after
dietary changes, where discrete sets of ERVs were uniquely upregulated
in each participant after defined diets (Extended Data Fig. 3e).

Based on study design, the overall daily intake of dietary iron, an
important component of erythropoiesis, was higher in vegan com-
pared with ketogenic diet (Extended Data Fig. 3f). Accordingly, we
observed anupregulation of erythrocyte differentiation aswell asheme
biosynthesis and metabolism in vegan diet only. To attempt to corre-
late diet-associated signature with disease states, we next performed
Ingenuity Pathway Analysis (IPA) disease term analysis (Fig. 2c). This
analysis confirmed our BTM and Hallmark analyses, with anincrease in
redblood cell-associated pathways following vegan diet and increased
lymphopoiesis following ketogenic diet. We also saw higher activation
of pathways associated with cancer in vegan compared with ketogenic
diet. A total of 308 cancer-associated pathways were significant, of
which 66 were predicted to have higher activation following ketogenic
diet, and 242 were predicted to show stronger activation following
vegandiet (Extended DataFig.3g). Four pathways reached anactivation
score difference of 2 or greater, all of which showed stronger activation
following vegan diet (Fig. 2c). Of note, these observations alone do not
predict any differences in patients’ susceptibility to cancer and cancer
outcome. Our datasuggest that both ketogenic and vegan diets might
influence cancer outcome, and preliminary evidence supportstheidea
thatketogenic diet might be beneficial in conjunction with other cancer
treatments®*, whereas there are no published studies investigating
the impact of vegan diet on cancer. However in-depth epidemiologic
studies in humans, and mechanistic studies in animal models, would
be required to validate these potential associations and their link to
beneficial or worsening outcomes.

To predict drivers of transcriptional changes, we evaluated the
expression profiles of sorted cell populations from the blood** and ana-
lyzed gene expression from enriched pathways. Using this approach,
we found that upregulation of innate immunity following vegan diet
was predicted to be driven mainly by neutrophils, whereas upregulation
of adaptive immunity in ketogenic diet was predicted to be driven by
Band T cells (Fig. 2d and Extended Data Fig. 3h).

Overall, our data highlighted a divergent effect of diet on the
immune system, with ketogenic diet enriching for adaptive immune
signatures and vegan diet enriching for innate immune signatures.

Ketogenic diet has abroaderimpactonthe
proteosome

We next measured the abundance of about 1,300 proteins via
Somalogic from plasma of all 20 participants at baseline and post
ketogenic or vegan diet. Applying a linear mixed effects model (LME)
showed no significant difference between protein abundance in
vegan and ketogenic diets between participants from different
groups (P=0.5624). Analysis of variance (ANOVA) revealed that
a fraction of proteins were significantly impacted between diets.
Notably, ketogenic diet had the largest impact on protein abun-
dance (baseline versus ketogenic, 107; vegan versus ketogenic, 137),
while only a few proteins were significantly altered between base-
line and vegan diet (21) (Fig. 3a). Diet order did not affect direction
or magnitude of fold change of differentially abundant proteins
(Extended Data Fig.4a-c). Additionally, ANOVA applied to datafrom
participants with different starting diets did not reveal additional
proteins significantly impacted by diets, confirming that diet order
does notimpact the effect of diet on protein abundance (Extended
DataFig. 4d).

We next analyzed the origin of differentially impacted proteins
by downloading tissue annotations from the Human Protein
Atlas®. Ketogenic diet impacted proteins predicted to originate
from several tissues, including the blood, brain and bone marrow,
while both diets affected proteins predicted to originate from the
liver and secondary lymphoid organs (Fig.3b). Thus, aketogenic diet
may have a broader impact on host protein secretion or clearance
than avegan diet.

We performed functional enrichment analysis with STRING*®
based on fold change of all proteins (Fig. 3¢). Consistent with
results gained from transcriptomics analysis, we observed a significant
enrichmentin heme metabolism following vegan diet (Fig. 3c). Of note,
wealso observed an enrichment of insulin signaling pathway inbaseline
diet compared with ketogenic diet (Fig. 3c).

PCA did not show separation by diet but showed several outliers
(Fig.3d). Further analysis revealed that all outliers were female partici-
pants who showed substantially greater changes following ketogenic
diet, highlighting potential sex-bias in responsiveness to diet (Fig. 3e).
Sex-specific differencesin proteinabundance between dietsincluded
proteins associated with glucose metabolism, as well as immunity
(Extended DataFig. 4e).

Thus, proteomic data analysis revealed that a ketogenic diet
may have the strongest effect on the proteome of study participants.
Furthermore, proteomic data supported the idea that vegan diet can
promote heme metabolism and that there is a sex-specific difference
inthe magnitude of response to diet.

Ketogenic diet downregulates microbial amino
acid metabolism

Host dietis one of the main drivers of microbiota composition and func-
tion”?%, As such, we performed microbiome metagenomic sequenc-
ing, which allows analysis of changes in microbiota composition and

Fig. 2| Ketogenicdietis associated with heightened adaptive immunity and
vegandiet with heightened innate immunity. a, BTM analysis showing enriched
pathways for all comparisons noted on the bottom. Dots are scaled by —log,,(Pvalue)
and colored by network enrichment score (NES). Category names were shortened.
Refer to Extended Data Fig. 3i for full names. Significance was calculated and
multiple-testing corrected with the fgsea pathway package. b, Hallmark analysis
showing enriched pathways for all comparisons noted on the bottom. Dots are
scaled by -log,,(Pvalue) and colored by NES. Category names were shortened. Refer
to Extended Data Fig. 3j for full names. Significance was calculated and multiple-

testing corrected with the fgsea pathway package. ¢, Bar graph showing results from
IPA disease term analysis. The x axis shows activation Z-score (comparing ketogenic
versus vegan diet). Bars are colored by -log,,(Pvalue). Positive Z-score values show
disease terms enriched in ketogenic diet, whereas negative Z-scores show disease
terms enriched in vegan diet. Significance was calculated using Fisher’s exact test.
d, Heat map of gene expression (as row Z-score) from sorted populations from the
blood downloaded from the Human Protein Atlas*. Depicted genes are members

of pathways significantly differentially enriched between ketogenic and vegan
dietsin BTM analysis. B, baseline; K, ketogenic; V, vegan; P, previous diet.
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predicted function. Principal coordinate analysis (PCoA) showed no
clear separation between diets (Fig. 4a); however, data clustered in
two different clusters. Further investigation showed that, in line with
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low Prevotella abundance before dietary intervention (Extended Data
Fig. 5a). Such differences may have been driven by variations in fiber
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intake during baseline diet, although analysis of the food question-
naires intended to examine baseline diet did not show any significant
differences in fiber intake in participants (Extended Data Fig. 5d).

While we did not see any significant differences in the diversity
ofthe microbiome per participant between diets (alpha diversity), we
saw significant differences in the microbiome composition between

Nature Medicine | Volume 30 | February 2024 | 560-572

565


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-023-02761-2

Fig.3|Proteomics datashow upregulation of adaptive immunity following
ketogenic diet. a, Volcano plot for protein abundance of comparisons noted
ontop. Proteins that are significantly different (fold change greater than 2, false
discovery rate (FDR) < 0.01) are colored purple. Significance was calculated
with a paired Wilcoxon signed-rank test with multiple-testing correction. b, Dot
plot showing tissue origin of differentially abundant proteins. Dots are scaled
by number of proteins. ¢, Bar graph showing functional enrichment analysis
using STRING. Analysis was performed on fold changes of all proteins between
ketogenic and vegan (left) and ketogenic and baseline diets (right). Orange bars

denote upregulation in ketogenic diet, blue in vegan, gray in baseline diet.d, PCA
of proteome data colored by sex. e, Box-and-whisker plot showing Euclidean
distance from PCA separated by sex. The lower and upper hinges of the box
correspond to the first and third quartiles (the 25th and 75th percentiles); the line
inthe box indicates the median. The upper whisker extends from the hinge to the
largest value no further than 1.5 x interquartile range (IQR) from the hinge and
the lower whisker extends from the hinge to the smallest value at most 1.5 x IQR
from the hinge (n =20, 11 males/9 females). Significance was calculated by a
paired two-sided ¢t-test. **P < 0.01. GO, gene ontology; FDR, false discovery rate.

ketogenic and vegan diet (beta diversity), demonstrating a shift in
microbiome composition following consumption of a ketogenic diet
(Fig.4b,cand Extended DataFig. 5b). We did not find significant differ-
encesinalphadiversity (P=0.1028) or beta diversity between groups
perdiet (P=0.75952 for Shannon diversity, P = 0.65461for Chaol rich-
ness) (Extended Data Fig. 5¢). Phyla analysis highlighted significant
changes between ketogenic/vegan diet compared with baseline, but
only a few differences when comparing ketogenic versus vegan diet
(Fig. 4d). Most of the differences driving the change in beta disper-
sionbetween ketogenic and vegan/baseline diets resulted from shifts
in abundance of species within the same phyla. Changes in species
abundance between ketogenic and vegan diets were predominantly
observed for Actinobacteria, Bacteroidetes, Firmicutes and Proteo-
bacteria, with Firmicutes being the mostimpacted phylum (26 species
changed, of which 18 are more abundant in vegan diet) (Fig. 4e). In
line with previous studies™**, we also observed changes follow-
ing ketogenic diet in the abundance of species known to be enriched
in ketogenic or animal-rich diets (for example, Bacteroides sartorii,
Bacteroides vulgatus™),and changes following vegan dietin abundance
of species previously reported to be enriched in fiber- or plant-rich
diets (for example, Bifidobacterium longum, Bifidobacterium pseudo-
catenulatum®®) (Fig. 4€).

We next mapped all reads to Enzyme Commission (EC) numbersto
gain functionalinsights. Inagreement with each diet consumed, most
microbial enzymes upregulated following vegan diet were associated
with digestion of polysaccharides unique to plants, whereas microbial
enzymes upregulated following ketogenic diet related to digestion of
polysaccharides coming from both plant and animal (Extended Data
Fig. 5e). Interestingly, a ketogenic diet resulted in substantial down-
regulation of microbial gene abundance compared with baseline and
vegan diets, which was reflected by the downregulation of numerous
pathways following ketogenic diet (Fig. 4f,g, left). For instance, the
biosynthesis of amino acids (12) and vitamins (9) was downregulated
following ketogenic diet. This included biosynthesis of essential and
branched-chainamino acids (BCAAs), as well as biosynthesis pathways
for vitamins B1, B5 and B12 (Fig. 4g, right). Reduction in amino acid
metabolismwithin the microbiome following ketogenic diet may result
from higher abundance of amino acids in the ketogenic diet, making

the host less reliant on microbiome-derived amino acids. Further
exploration of functional trade-offs associated with each diet would
beanimportantline of research.

Toidentify potential drivers of functional changes, we next identi-
fied the top generaproducingall enzymes evaluated in the dataset, as
well as all enzymes that were part of significantly impacted pathways
following dietary intervention (Fig. 4h). We found that only six genera
(Bacteroides, Blautia, Eubacterium, Faecalibacterium, Lachnospira
and Ruminococcus) were predicted to express enzymes from path-
ways significantly changed (Fig. 4h). Further exploration of drivers of
functional change in the microbiome may open the door to precision
microbiome modeling using dietary interventions.

Thus, a ketogenic diet has a more significant impact on micro-
biome composition and predicted function than a vegan diet, with
several of the downregulated pathways associated with amino acid
and vitamin metabolism.

Dietsimpact host amino acid metabolism and
lipids

Metabolomic analysis can provide valuable insights into how diet
shapes host metabolism. We next performed targeted metabolomics
analysisin plasmaandurine for all participants (Supplementary Table1).
Incontrast to our proteomic and microbiome datasets (Figs. 3d and 4a),
PCA generated from plasma metabolomic data separated all partici-
pants by diet, with baseline metabolomics profiles clustered directly
between ketogenic and vegan diet profiles (Extended Data Fig. 6a),
and only minor sex-specific effects (Extended Data Fig. 6b,c). We did
not find any significant differences in metabolite profiles between
diet groups (P =0.4892). In total, 185 (of 859) metabolites were sig-
nificantly changed between vegan and ketogenic diets in the plasma
(54 metabolites upregulated in vegan, 131 upregulated in ketogenic
diet) (Fig. 5a), with lipids being the most impacted (Extended Data
Fig. 6e). We only observed three significantly changed metabolites
between vegan and baseline diets and 16 significantly changed metabo-
lites between ketogenic and baseline diets (of 676 total) (Extended
Data Fig. 6d). ANOVA confirmed that diet order does not impact the
effect of diet on metabolite profiles (Extended Data Fig. 6f). Thus,
metabolomics—a more direct read-out of the impact of diet on the

Fig. 4 | Ketogenic diet significantly alters composition and function of
microbiome. a, PCoA of microbiome data with 95% confidence interval. The
datasplitinto two clusters. b, Centroid analysis for beta dispersion plot. c, Beta
diversity plot for each individual from PCoA analysis with connection between
ketogenic and vegan diets for each participant. Connection lines are colored

by starting diet. Significance was calculated with a PERMANOVA test using a
marginal model -Diet + SubjectID. d, Stacked bar graph showing distribution of
abundant phyla (>1%) for all individuals following baseline, ketogenic and vegan
diets (left). Individuals on top are colored based on the cluster membership of
panel a. Significance was calculated using Maaslin2 and P values were adjusted
with the qvalue R package. Dot plot shows significance of changesin phylum
between diet comparisons (right). Purple dots show significant changes, whereas
green dots denote no significance. e, Box-and-whisker plot of fold change of
significantly differentially abundant species between ketogenic and vegan
diets for all significant taxa (Q value < 0.2). The lower and upper hinges of the
box correspond to the first and third quartiles (the 25th and 75th percentiles);

thelinein the boxindicates the median. The upper whisker extends from the
hinge to the largest value no further than1.5 x IQR from the hinge and the lower
whisker extends from the hinge to the smallest value at most 1.5 x IQR from the
hinge (n =10). f, Volcano plot showing fold change of abundance of EC numbers
for ketogenic diet versus baseline diet (left) and ketogenic diet versus vegan
diet (right). Purple dots show enzymes from significantly differently abundant
pathways for each comparison. Significance was calculated using Maaslin2

and Pvalues were Bonferroni-Hochberg corrected. g, Lollipop plot showing
number of significantly changed pathways from MetaCyc enrichment analysis
(left) and changed subpathways for amino acids and vitamin biosynthesis (right)
for ketogenic diet versus baseline diet and ketogenic diet versus vegan diet.

h, Stacked bar graph showing which genera contribute to pool of all enzymes
(left) and all enzymes from significantly differently enriched pathways between
ketogenic diet and vegan diet (right). PAMP, pathogen-associated molecular
patterns.
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Fig. 5| Diets significantly affect host amino acid metabolism. a, Volcano

plot for all metabolites between ketogenic and vegan diets. Metabolites that

are significantly different (FDR < 0.01) are colored purple. Significance was
calculated by paired two-sided t-test and multiple-testing corrected. b, Bar graph
showing all significantly differently enriched MetaboAnalyst pathway results
upregulated following ketogenic diet (left) and following vegan diet (right).

¢, Abundance of all amino acids in ketogenic and vegan diets. The lower and
upper hinges of the box correspond to the first and third quartiles (the 25th and
75th percentiles); the line in the box indicates the median. The upper whisker

extends from the hinge to the largest value no further than 1.5 x IQR from the
hinge and the lower whisker extends from the hinge to the smallest value at most
1.5 xIQR from the hinge (n = 20). Significance was calculated by paired two-sided
t-test and multiple-testing corrected. d, Comparison of pathway enrichment
between plasma (x axis) and 24-h urine (y axis) samples. Only pathways enriched
inbothsamples are labeled. e, Heat map showing quantity of all significantly
differentially abundant lipids per participant (column), with color legend
depicting iflipids contain saturated or unsaturated fatty acids. P values: *P < 0.05;
**P<0.01;,**P<0.001.
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host than transcriptomic or proteomic data—might be a better dataset
to understand mechanistic regulation of the host response to dietary
interventions.

To gain functionalinsights into nutrition-metabolite-host physi-
ology crosstalk, we performed functional enrichment analysis from
plasmasamples (Fig. 5b). Both ketogenic and vegan diets were associ-
ated with significantly upregulated amino acid biosynthesis pathways
(Fig. 5b). Specifically, aketogenic diet significantly upregulated path-
ways associated with biosynthesis and degradation of valine, leucine
andisoleucine (BCAAs) (Fig. 5b) —aligned with the higher abundance
of BCAAs in the plasma of participants consuming a ketogenic diet
(Fig.5candref. 25). Thus, abundance of amino acids in diet might result
inupregulation of amino acid metabolisminthe host and a paradoxical
downregulation of amino acid metabolism by the microbiota (Fig. 4g).
Incontrast, we observed that alanine, aspartate and glutamate metabo-
lism, as well as arginine biosynthesis, were specifically upregulated
following vegan diet (Fig. 5b).

Contrary towhat was observed using plasmasamples, differences
between diets were less evident when assessing metabolites from urine
samples, with significant upregulation of only the Pantothenate and
CoA biosynthesis pathway following ketogenic diet compared with
vegandiet (Extended DataFig. 6g). Overlappingall enriched pathways
(independent of significance) revealed four that were concurrently
enriched in plasma and urine samples, all of which were associated
with the upregulation of amino acid and vitamin biosynthesis follow-
ing ketogenic diet (Fig. 5d).

Inline with higherintake of fatty acids during ketogenic diet, a high
number of lipids were also enriched in ketogenic diet versus vegan diet
(81linketogenic versus 22in vegan diet) (Extended Data Fig. 1h). While
bothsaturated and unsaturated fatty acid contents were significantly
higherinketogenic diet (Extended DataFig.1h), only lipids containing
saturated fatty acids were enriched in plasma of participants during
the ketogenic diet (Fig. Se). In contrast, the vegan diet significantly
upregulated lipids containing unsaturated fatty acids (Fig. 5e). Whether
these divergences account for the differentialimpact on hostimmunity
would be of interest to explore in future studies.

Overall, and in line with our microbiome data, we observed a
stronger impact of a ketogenic diet on plasma host metabolite pro-
files than with a vegan diet. Most enriched pathways were associated
with amino acid metabolism, with a total of 16 pathways enriched in
bothmicrobiome and metabolomics datasets (Fig. 6a). Strikingly, and
despite the diversity and small number of participants, ten of those
were convergently enriched following a vegan diet (Fig. 6a).

We next focused specifically on correlations between enzymes,
metabolites and proteins (Extended Data Fig. 7a-c). All pairwise cor-
relation matrices showed areas of high correlation. We observed a
substantialamount of negatively correlated metabolites and microbial
enzymes (Extended Data Fig. 7a), whereas metabolites and proteins,
aswellas microbial enzymes and proteins, were mainly positively cor-
related (Extended Data Fig. 7b,c).

We identified data points that where highly interconnected
(Extended Data Fig. 7d-f) and generated a network considering only
data points with more than ten significant correlations (Fig. 6b). We
observedadensely connected network with linkages between all data-
sets, with an upper region consisting of only data points that are simi-
larly abundant and alower region consisting of many data points that
are significantly differently abundant between ketogenic and vegan
diets (Extended Data Fig. 7g). Microbial enzymes, metabolites and
proteinsinthe network were associated with a vast variety of biological
functions, including immune system, amino acids, lipids, apoptosis
and cell adhesion (Extended Data Fig. 7h). We next focused on the
most represented functional terms (lipids, immune system and amino
acids) (Fig. 6b). The lower region of the network was mainly driven by
compounds associated with lipids oramino acids. The upper part of the
network showed a dense connection of mostly immune-related data

points, which were predominantly associated with adaptive immunity
and host-virus interactions. In line with our conclusion from tran-
scriptomic and proteomic datasets, most of the data points associated
with adaptive immunity were more abundant following ketogenic diet
compared with vegan diet (Fig. 6¢).

Thus, despite the heterogeneity and small number of participants,
our complex dataset allowed us to uncover a highly interconnected
network between proteins, metabolites and microbial enzymes, which
was mainly driven by amino acids, lipids and immune-related factors.

Discussion

Uncovering the principles by which nutrition regulates immunity
in humans could greatly improve our ability to design personalized
nutritional interventions that prevent and treat disease. Here we
present the first study, to our knowledge, exploring the impact of a
highly controlled, cross-over, dietary intervention on humanimmunity,
metabolism and microbiome. Of particular importance is the obser-
vation that despite the diversity of participants, our complex dataset
quantifying proteins, microbial enzymes and metabolites revealed
highly convergent and interconnected pathways. However, this study
included only asmallnumber of participants. At this stage it is unclear
howtheseresults generalize to aboarder population. Bigger studies are
necessary toaddress this question sufficiently. Collectively, our work
revealed abroaderimpact of ketogenic diet on proteome, metabolome
and microbiome data, whereas both diets had asignificantimpact on
host immunity (Fig. 6d). Why the ketogenic diet led to more widespread
changes in host immunity, metabolism and microbiome than vegan
dietremains unclear at this stage. One possibility is that the ketogenic
diet resulted in increased utilization of fat and ketones as its primary
energy source and less carbohydrate, which was the main fuel during
both baseline and vegan diets”.

Our study revealed that a2-week dietary intervention canimpose
astriking shiftin hostimmunity, superseding genetics, age, sex, ethnic-
ity, race and even body mass index. Of note, this study did not contain
awash-out period between diets. Interestingly, the order in which the
diets were consumed did not affect our results, showing that 2 weeks
of dietis sufficient to rewire hostimmunity, the microbiome, as well as
host proteomic and metabolomic profiles. Nevertheless, the time span
required toimpact the host as well as the duration of theimpactshould
be investigated further. While our findings highlight the important
role of diet in rapidly rewiring host immunity, one major limitation of
the present study is that exploration of immune signature was limited
to blood. Whether the impact of a ketogenic or vegan diet observed
in peripheral blood reflects changes in tissue immunity, and whether
all tissues respond in a convergent manner to each diet, remains to be
addressed. Nonetheless, our work uncovers that, at least in the blood
compartment, a ketogenic diet heightened signatures linked to adap-
tiveimmunity. These findings are aligned with the previously reported
role of ketogenic diet in increasing y5 T cell responses in mice**2. On
the other hand, we observed a previously unreported upregulation
of innate immunity following vegan diet. Our findings also highlight
a significant upregulation of erythropoiesis and heme metabolism
following vegan diet. Heme is important in regulating transcription
and protein synthesis during erythropoiesis*?, and, inaddition to oxy-
gen transportation, erythrocytes are important modulators of innate
immunity**. In line with this observation, the overall intake of dietary
iron, anotherimportant component of erythropoiesis, was significantly
higher in vegan diet than in ketogenic diet. Dietary iron comes in two
different forms, hemeiron (mainly found in meat and animal products)
and nonhemeiron (found in plantand animal products)*. They differin
theirbioavailability and absorption rate. About 30% of heme-boundiron
isabsorbed, whereas only 1-10% of nonheme-bound ironis absorbed.
Whether and how different sources of iron have differentimpacts on the
immune system and host metabolism is currently unclear, but would
be animportant variable to investigate in future studies.
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Animportant variable to consider when assessing the impact of
diet on host immunity is the relative caloric intake. A previous study
using the same cohort demonstrated that ad libitum consumption ofa
vegan diet was associated with asignificant reduction of caloricintake
when compared with aketogenic diet”. Previous work from our labo-
ratory and others showed that caloric reduction was associated with
significant changes in host immunity**~*® and, in particular, increase
in monocyte function in humans®. Thus, whether increased innate
immunity signature following vegan diet resulted from a qualitative
versus a quantitative (or both) difference in nutrition remains unclear
at this point and would require further investigation.

Diet is the most important regulator of the host microbiome
and, aligned with this, we found that ketogenic diet had a pro-
nounced effect on the composition and function of the microbiome.
Previous work in humans®” showed changes in microbiome composi-
tion, which were reproduced in this study, including an increase of
bile-tolerant bacteria during ketogenic diet, as well as a decrease
in Firmicutes. We did not observe any major differences between
baseline and vegan diets, despite a large increase in fiber intake
during the vegan diet. However, it is important to highlight that
sampling of the participants was limited to fecal material and that
changes in microbial communities and/or enzymatic function may
be enriched at sites not highly represented in our samples, such as
those linked to the epithelium or the small intestine lamina propria.
To get a deeper understanding of the impact of diet on the micro-
biome, a more comprehensive sampling of the microbiome would
be needed. Nonetheless, our findings reveal that most microbial
enzymes were downregulated following ketogenic diet, leading to
significant downregulation of pathways associated with amino acid
metabolism and biosynthesis. In contrast, metabolomics data reveal
that ketogenic diet had a strong impact on the metabolomic profile
in the plasma of all participants, with an upregulation of BCAA and
otheramino acid pathways. Since ketogenic dietis enriched inamino
acids, this observation highlights the tradeoff of function between
the microbiota and its host. Of note, the pathways for alanine,
aspartate and glutamine metabolism were upregulated following
vegan diet, both in the microbiome and in metabolomics datasets
(Fig. 6a). Further research would be necessary to understand the
exactregulation and tradeoffin amino acid metabolisminboth the
host and the microbiome.

Nutrition profoundly impacts all aspects of our physiology. There-
fore, there is great urgency to continue building a rigorous under-
standing of the impact of diet on humanimmunity and inflammation.
Although highly preliminary at this stage, our findings indicate dif-
ferences in activation of pathways associated with cancer following
vegan and ketogenic diets. To date, there are no studies investigating
theimpact of vegan diet on cancer or other diseases. However, previous
case studies proposed potential anti-cancer properties of aketogenic
diet (reviewed in**). Thus, much remains to be done to understand the
mechanisms of action and the possible relevance of consuming defined
diets to specific disease states. We believe that our present findings
further highlight the great potential of highly controlled dietaryinter-
ventions tobetter understand integrative physiology, improve human
health and mitigate disease.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
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Methods

Recruitment and selection of participants

The study protocol was approved by the Institutional Review Board of
the National Institute of Diabetes and Digestive and Kidney Diseases
(NCT03878108) andis available on the Open Science Framework web-
site (https://osf.io/fjykq/). Participants were fully informed of the risks
of the study and signed consent forms before any study procedures.
The study was conducted from April of 2019 to March of 2020 in the
Metabolic Clinical Research Unit of the NIH Clinical Center. Thefirst pri-
mary outcome of this study compared the mean energy intake between
each 2-week diet period. The second primary outcome compared the
mean energy intake on the second week of each diet period. Results
for both primary outcomes were previously reported”. The primary
exploratory aim of this study (which is reported in this manuscript)
was to compare changes in immunity, microbiome composition and
function, and metabolite profiles between each 2-week period of diet.
Details about the study participants, inclusion and exclusion criteria,
as well as experimental setup were previously published®. In short,
male and female participants aged 18-50 yr, with stable weight and
no metabolic, cardiovascular or any other disease that may influence
metabolism (for example, cancer, diabetes, thyroid disease), were eli-
gible for this study. Study participants were admitted to the Metabolic
Clinical Research Unit at the NIH Clinical Center where they resided in
individual rooms. Each participant was randomly assigned to receive
either the ketogenic or vegan diet for the first 14 d, immediately fol-
lowed by the alternative diet for another 14 d. Sex was determined by
self-reporting. For proteomics and metabolomics data, samples from
20 participants were collected (11 male/9 female) and data were ana-
lyzed for differenceinresponses by sex. For microbiome data, samples
from ten participants were analyzed (5 male/5 female). For RNA-seq
data, samples from six participants (3 male/3 female) were analyzed,
and for flow cytometry data samples from seven participants (3 male/4
female) were analyzed. Due to the small sample size for those datasets,
no sex differences were analyzed. Informed consent was obtained from
all participants; however, not all participants consented to broad data
sharing. Therefore, flow cytometry, proteomics, metabolomics data
and nutritionalinformation, as well as metadata, will be shared only by
request, whereas RNA-seq and microbiome dataare publicly available
asall participantsin those datasets consented to broad data sharing.

Statistics and reproducibility

This study was sufficiently powered to assess the effects of primary
and secondary outcomes. A detailed power calculation is available in
ref. 25. The analysis presented in this manuscript was exploratory and
no statistical method was used to predetermine sample size, but the
effects observed were large and highly statistically significant. Two
microbiome samples were excluded from the analysis due to their
collection dates (sample for baseline was taken after more than 8 d
ondiet). Due to the nature of this study and the obvious difference in
food presented to the participants, theinvestigators were not blinded
to allocation during experiments and outcome assessment.

Dietary intervention

All meals and snacks for the diets were designed and analyzed using
ProNutra software (v.3.4, Viocare), with nutrient values derived
from the USDA National Nutrient Database for Standard Reference,
Release 26 (https://www.ars.usda.gov/ARSUSERFILES/80400535/
DATA/SR26/SR26_DOC.PDF) and the USDA Food and Nutrient Database
for Dietary Studies, 4.0 (https://www.ars.usda.gov/northeast-area/
beltsville-md-bhnrc/beltsville-human-nutrition-research-center/
food-surveys-research-group/docs/fndds-download-databases/).
Foods and beverages were categorized according to the NOVA sys-
tem and glycemic index was calculated relative to 50 g of oral glu-
cose. Both diets had acommon foundation of nonstarchy vegetables
with low amounts of digestible carbohydrates. For the ketogenic diet,

animal-based products including meat, poultry, fish, eggs, dairy and
nuts were added, whereas for the vegan diet legumes, rice, root veg-
etables, soy products, corn, lentils, peas, whole grains, bread and fruit
were added.

Bottled water and snacks representative of the prevailing diet
were provided ad libitum throughout the day in snack boxes located
in the inpatient rooms. Meals were presented to the participants
withinstructions to eat as much or as little as desired.

Remaining food and beverages from each meal were identified
and weighed by nutrition staff to calculate the amount of each food
consumed, and the nutrient and energy intakes were calculated using
the nutrition software described above. This was completed for all
1,680 meals, as well as for the daily snacks and bottled water. Two
participants had errors in their food weights while on the vegan diet
and, therefore, the intake data for the days with these errors (3 d total)
were removed from the final dataset.

Blood sample collection
Blood samples were collected at different time points per individual
(Supplementary Table1).

Processing of blood samples for flow cytometry and
transcriptomic analysis

Blood obtained from seven subjects at three time points (21 samples)
was used to isolate PBMCs for flow cytometry. Further blood from
six subjects at three time points (18 samples) was obtained for tran-
scriptomic analysis. PBMCs were isolated from 5 ml of whole blood
using LeucoSep tubes (Greiner Bio-one) and Ficoll-Paque Plus (GE
Healthcare) for density gradient centrifugation, before cryopreserva-
tion in 90% heat-inactivated FBS (Gibco) with 10% dimethyl sulfoxide
(Sigma-Aldrich), according to a standard protocol (https://chi.niaid.
nih.gov/web/new/our-research/SOP-Isolation.pdf). For RNA analysis,
100 pl of whole blood was lysed in Trizol-LS (Qiagen) according to
manufacturer’sinstructions and immediately kept at =80 °C.

Flow cytometry of PBMCs

PBMCs from 21 samples were thawed and washed in RPMI containing
50 U ml™benzonase nuclease then PBS. Cells were incubated with LIVE/
DEAD Fixable Blue Dye (Life Technologies), washed and re-suspended
in 100 pl of FACS buffer (PBS with 0.5% fetal calf serum, 0.5% normal
mouse serum and 0.02% NaN,), before incubation for 30 min with
fluorochrome-conjugated antibodies to CD3, CD4, CDS8, CDllIc,
CD14, CD16, CD19, CD20, CD24, CD25, CD27, CD38, CD45, CD45RA,
CD45RO0, CD56, CD123, CD127, CCR4, CCR6, CCR7, CCR10, CXCR3,
CXCRS,HLA-DR and IgD (Extended Data Table 2). Cells were washed an
additional two times with FACS buffer, fixed in 1% paraformaldehyde
andacquired using an Aurora spectral cytometer (Cytek Biosciences).

Analysis of flow cytometry data

After data acquisition, the frequency of major populations was ana-
lyzed with FlowJo software v.10 (BD Biosciences) based on previously
described manual gating strategies® (Extended Data Table 1 and
Extended Data Fig. 2). For statistical analysis, fold change between
frequencies per population per individual was calculated and
assessed using a two-sided paired ¢-test with Bonferroni-Hochberg
multiple-testing correction.

LME model to estimate impact of diet order on data
Toestimateifthere were any biases introduced by the order of diets, we
appliedan LME model (-diet_group + (-diet_group | diet)) withthe ImerT-
est R package® for proteomics, metabolomics and microbiome data.

RNA-seq library preparation of whole blood
RNA was extracted from 18 samples stored in Trizol-LS using the
miRNeasy Micro Kit (Qiagen), following the manufacturer’s protocol
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for samples containing <1 pg of RNA. Briefly, buffer RWT was pre-
pared with isopropanol, and after binding to RNeasy columns the
RNA was treated with DNasel (Qiagen) before washing and eluting
in 20 pl of nuclease-free water. RNA concentration was determined
using Qubit RNA High Sensitivity assay (Thermo Fisher), and quality
was assessed using Agilent 4200 TapeStation (Agilent Technologies).
RNA-seq libraries were prepared from 100 ng of total RNA using
Universal Plus mRNA-seq Kit with NuQuant Human Globin AnyDeplete
kit (Tecan Genomics). First, messenger RNA transcripts were cap-
tured, fragmented and converted to complementary DNA. Following
second-strand synthesis and end repair, DNA fragments were ligated
with dual-indexed adapters compatible with the lllumina platform.
Libraries were subjected to strand selection and removal of ribosomal
RNA and globin transcripts, followed by 16 cycles of amplification.
Purified libraries were analyzed with the Qubit and Agilent TapeStation
to assess concentration and size distribution, respectively, then nor-
malized and pooled for sequencing. Final molarity of the pool was
determined by quantitative polymerase chainreaction using the KAPA
library quantification kit (Roche). Paired-end sequencing was per-
formed onthe NextSeq 500 (Illumina) using the High Output150-cycles
kitin 2 x 75-base pair (bp) format.

Analysis of RNA-seq

Sequencing results were demultiplexed and converted to FASTQ
format using Illumina bcl2fastq software (Illumina). The sequenc-
ing reads were adapter and quality trimmed and then aligned to the
human genome (https://www.ncbi.nlm.nih.gov/datasets/genome/
GCF_000001405.26/; version hg38) using the splice-aware STAR
aligner® and single nucleotide polymorphism (SNP) calls were gener-
ated using the previously published protocol’’. SNP calls were used
for quality control of samples and subject mapping. Differentially
expressed genes were identified using the limmalinear model** which
models thelog of the counts per million (c.p.m.) of each gene. Enriched
gene sets were identified using the preranked gene-set enrichment
analysis (GSEA) algorithm implemented in the fgsea R package™.
Genes were ranked using the moderated T statistics for the relevant
coefficient from the limma model. Enrichment was assessed with a
gene-set list thatincluded MSIGDB’s Hallmark collection (https:/www.
gsea-msigdb.org/gsea/msigdb/human/collections.jsp) and BTMs*
(https://github.com/shuzhao-li/BTM). Analysis was performed on six
different comparisons: ketogenic diet versus baseline diet; ketogenic
diet versus vegan diet; ketogenic diet versus previous diet; vegan diet
versus ketogenic diet; vegan diet versus baseline diet; vegan diet versus
previousdiet. Previous diet refers to the diet consumed directly before-
hand (for example, when analyzing ketogenic diet versus previous diet,
previous diet refers to vegan diet for group A and to baseline diet for
group B). PCAwas performedin R using the function prcomp. For data
visualization of heat maps, transcripts per million (TPM) was used and
either TPM values or row Z-scores were shown. IPA** (Qiagen) was used
to analyze enrichment of disease terms. To analyze contribution of
sorted cell populations to the overall pathway signature, gene counts
for sortedimmune cell populations from the blood were downloaded
from the Human Protein Atlas® and visualized as heat maps showing
row Z-scores.

Proteomic analysis of plasma

Peripheral blood plasma obtained from 20 subjects at three time
points (60 samples) was analyzed using the SomaScan HTS Assay
(Somalogic), an aptamer-based quantitative proteomic biomarker
discovery platform®. The assay quantifies 1,306 proteins that belong
to broadbiological subgroupsincluding receptors, kinases, cytokines,
proteases, growth factors, protease inhibitors, hormones and struc-
tural proteins. A complete list of the analytes measured can be found
in Supplementary Table 2. The assay was run according to manufac-
turer specifications before data were normalized for hybridization,

interplate and median signal variation, and inspected using aweb tool,
both as previously described***.

Analysis of proteomics data

Differentially abundant proteins were calculated using a two-sided
paired t-test with Bonferroni-Hochberg correction. For tissue sig-
natures, tissue specificity was downloaded from the Human Protein
Atlas’®®. Proteins with enhanced or enriched tissue specificity were
considered for analysis of tissue origin, for all proteins significantly
upregulated in ketogenic and vegan diets separately. PCA was per-
formed in R using the package prcomp. To assess differences in PCA
between sexes, Euclidean distances between data points for each
individual between baseline diet and ketogenic diet, baseline dietand
vegan diet, and ketogenic diet and vegan diet were calculated, and
Student’s t-test was applied between female and male data. Functional
analysis was performed with STRING (https://string-db.org/) with data
fromfold change for all proteins between diets and using the STRING
analysis algorithm ‘proteins with value/ranks’.

Microbiome sample collection

Stool samples were collected at different time points per individual
(Supplementary Table 3). DNA was extracted from ~50 mg of stool
samples in two stages: an initial homogenization in Lysis Matrix E
tubes (MP Biomedicals) with a Precellys 24 Tissue Homogenizer
(Bertin Instruments) and processing of the resultant supernatant
using the MagAttract PowerMicrobiome DNA/RNA EP kit (Qiagen) on
an Eppendorfautomated liquid handling system as per the manufac-
turer’sinstructions.

Isolated DNA was checked for concentration and quality on a
BioTek Synergy HT X plate reader.

Metagenomic libraries were prepared using the Nextera DNA
Flex Library Prep Kit (Illumina) per the manufacturer’s instructions
with100 ng of DNA as sample input. The concentration of the libraries
was quantified using the Qubit dsDNA HS assay on a Qubit 2.0 fluoro-
meter (Life Technologies). Library size and quality were assessed via
the Agilent High Sensitivity DS000 ScreenTape on an Agilent 4200
Tapestation.

Metagenomic libraries were normalized to an equimolar concen-
trationand pooled. The pool was diluted to 1.8 pM, mixed witha1% PhiX
control library and paired-end sequenced (2 x 75 bp) using a NextSeq
500/550 High Output v2 150-cycle Reagent Cartridge on a NextSeq
500 sequencer (Illumina).

Microbiome analysis

For sequence analysis, read pairs were trimmed for quality at Q15
and Illumina Nextera adapter sequences were removed using BBDuk
(https://github.com/BiolnfoTools/BBMap/tree/master). The pairs were
subsequently assembled with the metaSPAdes pipeline from SPAdes™.
Taxonomic assignment was done with Kraken2 (ref. 60) using Bracken®
forabundance estimation and the maxikraken2 (v_ 1903 140GB) data-
base (https://lomanlab.github.io/mockcommunity/mc_databases.
html). Sequences matching to the humangenome were excluded from
allanalyses. For betadiversity and PCoA of the taxonomic abundances,
Jaccard distance measure on the relative abundance was used. To assess
changes in beta diversity, a permutation ANOVA (PERMANOVA)—a
permutation analysis of variance—was performed using the adonis2
function fromthe vegan R package 2.6-2 using a marginal model -Diet
+SubjectID.

Putative gene abundances were produced using Prodigal®* for
the computational gene finding on the assembled contigs, which was
parallelized by dividing the contigs into separate FASTA files using
seqkit®®, with bowtie2 (ref. 64) to map the reads back to the assembly,
samtools®tosortthe bamfiles, picard (http://broadinstitute.github.io/
picard/) to generate mapping statistics and remove machine duplicates
and VERSE® to estimate gene abundances from the mapping using
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the htseq algorithm®. HUMAnNN 3.0 (ref. 68) was used for functional
annotation of the putative gene sequences using the KEGG (https://
www.genome.jp/kegg/pathway.html), EC (https://enzyme.expasy.
org/) and MetaCyc® (https://metacyc.org/) pathways, databases and
default parameters. Putative enzyme (EC) abundances were compared
between diets, and those found to be significantly higher in each diet
were analyzed by AMON’® with the ‘unique only’ option for KEGG path-
way inference based oninferred compounds uniquely enrichedineach
diet (datashowninFig. 6).

Toidentify CAZymes (carbohydrate-active enzymes) (http:/www.
cazy.org/), the putative genes were profiled using the dbCAN"' stan-
dalone program, V10 database (https://bcb.unl.edu/dbCAN/) and the
HMMER, DIAMOND and eCAMItool options. We required that at least
two tools identify the CAZy’> domain as being present.

Statistical comparisons of taxonomic and gene abundances
between diets were carried out by first transforming the abundances
by centered log-ratio, and then using MaAsLin2 (ref. 73) with trans-
formation and normalization set to ‘NONE’ and method ‘LM’ using
the LME model -Diet + (1| SubjectID). Alpha diversity and ordination
were computed with the vegan R package 2.6-2™ using the diversity
and betadisper functions. Statistical analyses of the diversity were
performed with vegan’s adonis2 function and the ImerTest R package®.
All Pvalues were corrected for multiple comparisons using the qvalue
function from the qvalue R package.

Metabolomics sample collection

Discovery metabolomics analyses were conducted on stored (=70 °C
since collection) plasma and urine (collected over 24 h) samples from
20 participants (60 samples) by Metabolon. Samples were acquiredin
two different batches, withsamples fromketogenic diet and vegan diet
acquired together, and samples frombaseline diet acquiredina sepa-
rateexperiment. Samples were analyzed using ultra-high-performance
liquid chromatography (UPLC) with tandem mass spectrometry
(MS/MS) for a broad range of metabolites (<1 kDa), representing
multiple metabolic pathways including endogenously derived
amino acids, carbohydrates, lipids, cofactors and vitamins, inter-
mediates of energy metabolism, as well as xenobiotics derived from
exogenous sources such as food or drugs. In brief, serum samples
were prepared using the automated MicroLab STAR system via the
Hamilton Company. Recovery standards were added, and the pro-
tein fraction was extracted with methanol followed by vigorous
shaking and centrifugation. Sample extracts were dried and recon-
stituted using recovery solvents containing fixed concentrations
of standards. These extracts were analyzed using reversed-phase
UPLC-MS/MSin positive-ion-mode electrospray ionization (ESI) and
negative-ion-mode ESI. Raw data were extracted, peak-identified and
processed by Metabolon using proprietary software and abiochemical
reference library of more than 4,500 known metabolites based on
authentic standards.

Metabolomics analysis

For downstream analysis of ketogenic versus vegan diet (40 samples
in total), all compounds with more than four imputed values (10%
of the data) were filtered out. For analysis of baseline diet versus
ketogenic/vegandiet (60 samplesin total), all compounds with more
than six imputed values (10% of the data) were filtered out. To calcu-
late significant differences between diets, a paired Student’s ¢-test
was performed per compound and the P values were Bonferroni-
Hochberg corrected.

For the plasmadataset analyzing ketogenic diet versus vegan diet,
atotal of 188 compounds were filtered out due to missing/imputed
values, leaving a total of 859 compounds to be analyzed (Supplemen-
tary Table 4). For the plasma dataset analyzing baseline diet versus
ketogenic/vegan diet, atotal of 413 compounds were filtered out, leav-
ingatotal of 678 compounds to be analyzed (Supplementary Table 5).

For pathway analysis comparing ketogenic diet versus vegan diet,
compounds significantly upregulated in vegan or ketogenic diet were
converted to Human Metabolome Database (HMDB) IDs and uploaded
to MetaboAnalyst” using the enrichment analysis for pathway-based
analysis for KEGG pathways. A custom background was uploaded
(Supplementary Table 4). To generate the custom background, all
compounds with HMDB IDs were uploaded to MetaboAnalyst and
converted to chemical names. This file then was used as abackground
and 102 of 683 compounds were not matched to HMDB compound
names, leaving 581 compounds in the background set.

For the urine dataset comparing ketogenic versus vegan diet,
atotal of 412 compounds were filtered out due to missing/imputed
values, leaving a total of 970 compounds to be analyzed. A custom
background was uploaded of 621 compounds, of which 52 were not
recognized by MetaboAnalyst (Supplementary Table 4).

For comparison of pathways between plasma and urine, all path-
ways predicted to be enriched by MetaboAnalyst were used without
filter. Enrichment score of plasma versus urine was plotted.

For the lipid heat map, all significantly differentially abundant
compounds categorized as lipids were used. Lipids were than manu-
ally assigned as saturated fatty acids, unsaturated fatty acids or mixed
fatty acids.

Correlation analysis

All datasets with datafor atleast ten participants were correlated with
eachother (proteomics, metabolomics and microbiome data). For all
comparisons the log, fold change between ketogenic diet and vegan
diet was calculated.

To correlate microbial enzyme abundance with protein
abundance, log, fold changes of the c.p.m. abundances of each EC
number and log, fold changes of protein abundance were computed
fromsamples collected at time 3 over time 2 for each subject.

To correlate microbial enzyme abundance with metabolite abun-
dance, log,fold changes of the c.p.m. abundances of each ECand log,
fold changes of metabolite abundance were computed from samples
collected at time 3 over time 2 for each subject. To correlate metabo-
lites with protein abundance, log, fold changes of protein abundance
and metabolite abundance were computed from samples collected at
time 3 over time 2 for each subject. For all sample comparisons, cor-
relation was calculated for each subject using Spearman’s p calculated
with the pspearman’® R package and P values were FDR-corrected
with p.adjust.

Metabolomics and microbiome pathways

KEGG pathway analyses for metabolomics and microbiome (using
AMON) data were compared. All pathways predicted to be enrichedin
the metabolomics dataset and the microbiome dataset were merged.

Network analysis

All significant correlations were selected for downstream network
analysis. Allenzymes, metabolites and proteins with more thanten con-
nections were integrated into the network. Anetwork graph was gener-
ated and visualized with R packages igraph”” and tidygraph (https://
tidygraph.data-imaginist.com/).

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All RNA-seq raw data are publicly available through dbGAP: https://
www.ncbi.nlm.nih.gov/projects/gapprev/gap/cgi-bin/study.cgi?
study_id=phs003187.vl.pl. Microbiome sequencing data are avail-
able through BioProject accession PRJNA981159. All other datasets
(de-identified metadata, nutritional information, flow cytometry
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dataset, proteomics dataset and metabolomics dataset) are avail-
able upon request due to some participants not consenting to broad
data sharing. Requests should be sent to the corresponding authors,
Yasmine Belkaid (ybelkaid@niaid.nih.gov), Kevin Hall (kevinh@
niddk.nih.gov) or Verena Link (verena.link@nih.gov), and will
be fulfilled within 2 weeks. For analysis of nutritional data, USDA
National Nutrient Database for Standard Reference, Release 26
(https://www.ars.usda.gov/ARSUSERFILES/80400535/DATA/SR26/
SR26 _DOC.PDF) and the USDA Food and Nutrient Database for
Dietary Studies, 4.0 (https://www.ars.usda.gov/northeast-area/
beltsville-md-bhnrc/beltsville-human-nutrition-research-center/
food-surveys-research-group/docs/fndds-download-databases/)
were used. For RNA-seq analysis, reads were mapped to the human
genome (version hg38) (https://www.ncbi.nlm.nih.gov/datasets/
genome/GCF_000001405.26/). For analysis of gene expression from
sorted cell populations from blood, as well as to analyze tissue origin
from proteins, the Human Protein Atlas (https://www.proteinatlas.
org/) was utilized. For functional annotation analysis, we utilized the
MSIGDB’s Hallmark collection (https://www.gsea-msigdb.org/gsea/
msigdb/human/collections.jsp) and blood transcription modules data-
base (https://github.com/shuzhao-li/BTM). For microbiome analysis,
the maxikraken2 DB (https://lomanlab.github.io/mockcommunity/
mc_databases.html) (v_1903 140GB) was utilized, as well as the KEGG
DB (https://www.genome.jp/kegg/pathway.html), the enzyme nomen-
clature (EC) DB (https://enzyme.expasy.org/), the MetaCyc DB (https://
metacyc.org/), the dbCAN DB (https://bcb.unl.edu/dbCAN/) and the
CAZy DB (http://www.cazy.org/).

Code availability

All custom code utilized for the analysis of these datais available upon
request as not all datasets are publicly available. Requests should be
senttothe correspondingauthors, Yasmine Belkaid (ybelkaid@niaid.
nih.gov), Kevin Hall (kevinh@niddk.nih.gov) or Verena Link (verena.
link@nih.gov), and will be fulfilled within 2 weeks.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Background information about study cohort and diets.

(a-d) Distribution of different characteristics in the study population. Plots
showing race (a), gender (b), body mass index (BMI) (c), and age (d). (e) Amount
of dietary fiber and dietary sugar in ketogenic and vegan diet in grams per

1000 kcal. (f, g) Box-whisker plot showing amounts of consumed components
of dietsin percentage (f) and total grams (g). (h) Amount of consumed types of

fatty acid in diets in grams. (i) Amount of consumed amino acids in diets ingrams.

Significance was calculated by two-sided paired t-test with multiple testing
correction. (j) Percentage of energy intake from different nutrients at baseline
based on food questionnaire analysis. (k) Schematic showing when microbiome
datawas collected. (I) Frequency of CD45" live cells in flow cytometry data. (m)
Bar graph of frequencies of all cell types significantly different between baseline

and diet (from Fig. 1c). Each dot represents one individual. Dots are colored by
starting diet (blue: vegan, orange: ketogenic). (n) Bar graph of frequencies of all
cell types significantly different between ketogenic and vegan diet (from Fig. 1d).
Each dotrepresents one individual. Dots are colored by starting diet (blue: vegan,
orange: ketogenic). Data is represented as box-whisker plotsin f-j. The lower

and upper hinges of the box correspond to the first and third quartiles (the 25th
and 75th percentiles), the linein the box indicate the median. The upper whisker
extends from the hinge to the largest value no further than 1.5 x interquartile
range (IQR) from the hinge and the lower whisker extends from the hinge to the
smallest value at most 1.5 x IQR of the hinge mean (n = 20). Data is represented as
bar graphsinm,n. Error bars show standard deviation (n = 7). P-values: *< 0.05;
**<0.01;***<0.00L; ****<0.0001.
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Extended Data Fig. 2| Gating strategy for high-dimensional flow cytometry data.
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Extended Data Fig. 3| Supporting data for RNA-seq analysis. (a) Heat map

of all expressed genes (TPM > 32) inall participants and diets. (b) Principal
component analysis (PCA) of RNA-seq data. (c) Heat map showing log 2
foldchange of all genes from significant innate immunity pathways (BTM
analysis). Participant number is denoted on top of heat map and colored by first
diet (blue: vegan, orange: ketogenic). (d) Heat map showing log 2 foldchange

of all genes from significant adaptive immunity pathways (BTM analysis).
Participant number is denoted on top of heat map and colored by first diet
(blue: vegan, orange: ketogenic). (e) Heat map of all expressed endogenous
retroviruses (ERVs) (TPM > 4). (f) Mean total daily iron intake in grams in
ketogenic and vegan diet. Datais represented as box-whisker plot. The lower
and upper hinges of the box correspond to the first and third quartiles (the 25th
and 75th percentiles), the line in the box indicate the median. The upper whisker

extends from the hinge to the largest value no further than 1.5 x interquartile
range (IQR) from the hinge and the lower whisker extends from the hinge to the
smallest value at most 1.5 x IQR of the hinge (n = 20). Significance was calculated
by atwo-sided paired t-test. (g) Bar graph showing the number of pathways
significantly enriched in IPA disease term analysis comparing ketogenic diet
withvegan diet. Pie chart shows proportion of cancer pathways with stronger
activation following ketogenic diet (orange) and vegan diet (blue). (h) Heat map
of gene expression (as row Z-score) from sorted populations from the blood
downloaded from the Human Protein Atlas*. Depicted genes are members of
pathways significantly differentially enriched between ketogenic and vegan diet
inHALLMARK analysis. (i) Table of BTM long names - referred to Fig. 2a (j) Table
of HALLMARK long names - referred to Fig. 2b. P-values: *** <0.001.
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Extended Data Fig. 4 | Supporting data for proteomics data. (a-c) Heat map of
log2 fold change with participants colored by starting diet (blue: vegan, orange:
ketogenic) for all significant differentially abundant proteins for vegan diet
versus baseline diet (a), ketogenic diet versus baseline diet (b), and ketogenic
diet versus vegan diet (c). (d) Venn diagram showing overlap of significantly
differentially abundant proteins from complete data set, data from group A

(starting diet: vegan), and group B (starting diet: ketogenic) for ketogenic diet
versus baseline diet (left) and ketogenic diet versus vegan diet (right). There
were no significantly differentially abundant proteins for baseline diet versus
vegan dietingroup A and group B. (e) Proteins that are significantly differentially
abundant between female and male participants. Significance was calculated by
Student’s t-test with multiple testing correction.
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Extended Data Fig. 5| Supporting datafor microbiome data. (a) Stacked

bar graph showing differences between clusters from Fig. 4a which is driven

by differences in abundance of Prevotella. Color on top denotes which cluster
the datawas fromin Fig. 4a.S: Sample (b) Alpha diversity measured by Chao
richness (left) and Shannon diversity (right). (c) Alpha diversity measured by
Chaorichness (left) and Shannon diversity (right) divided by group per diet.
(d) Box-whisker plots showing overall health index (HEI) score and intake of
fiber at baseline diet based on food questionnaire. (e) Volcano plot of microbial
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Extended Data Fig. 6 | Supporting data for metabolomics data. (a, b)

Principal component analysis (PCA) for plasma metabolomics data showing PC1
(explaining 10.1% of variation) and PC2 (explaining 7.7% of variation) colored by
diet (a) and sex (b). (c) Box-whisker plot showing Euclidean distance from PCA
separated by sex. The lower and upper hinges of the box correspond to the first
and third quartiles (the 25" and 75" percentiles), the line in the box indicate the
median. The upper whisker extends from the hinge to the largest value no further
than 1.5 x interquartile range (IQR) from the hinge and the lower whisker extends
from the hinge to the smallest value at most 1.5 x IQR of the hinge (n =20 -11

males/9 females). (d) Volcano plot for metabolites comparing vegan diet versus
baseline diet (left) and ketogenic diet versus baseline diet (right). Significance
was calculated with paired two-sided t-test with multiple testing correction.

(e) Bar graph showing number of total metabolites per category (left) and
percentage of significantly changed metabolites per category (right). (f) Venn
diagram showing overlap of differentially abundant metabolites for participants
for group A (start diet: vegan), group B (start diet: ketogenic) and complete data
set. (g) MetaboAnalyst analysis for 24 h urine samples.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| Supporting data for network analysis. (a-c) Correlation enzymes (d), metabolites and proteins (e), and microbial enzymes and proteins
heat maps showing correlations of all metabolites and microbial enzymes (a), (f). (g, h) Network of highly connected data points colored by significance (g) and
metabolites and proteins (b), and microbial enzymes and proteins (c). (d-f) categories (h).

Histogram of number of significant correlations for all metabolites and microbial
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Extended Data Table 1| Gating strategy for high dimensional flow cytometry

Pop# te 1 Gate2 Gate 3 Gated Gate 5 Gate 6 Gate 7 Parent population for expressing frequency of defined population

singlet Live CDA5+ cells
singlet Live CD45+ | CD3+CD19- singlet Live CDA5+ Total T cells
singlet Live CDA5+ _|CD3+CD19- CD4+CDB- singlet Live CDA5+/CD3+CD19- T helper cells (CD4+ T cells)
singlet Live CDA5+ _|CD3+CD19- CD4+CD8- CD38+ singlet Live CD45+/CD3+CD19-/CD4+CD8- CD38+ activated T helper cells
singlet Live CDA5+ | CD3+CD19- CD4+CDB- CD38+HLA-DR+ singlet Live CD45+/CD3+CD19-/CD4+CD8- CD38+HLA-DR+ activated T helper cells
singlet Live CD45+ | CD3+CD19- CD4+CD8- CDASRA- singlet Live CD45+/CD3+CD19-/CD4+CD8- CD45RA-T helper cells
singlet Live CD45+ [CD3+CD19- CD4+CD8- CDA5RA- CXCR5+CCR10- singlet Live CD45+/CD3+CD19-/CD4+CD8- CXCRS+ T helper cells (T follicular helper)
singlet Live CD45+ | CD3+CD19- CD4+CD8- CDASRA- CXCRS- singlet Live CD45+/CD3+CD19-/CD4+CD8- CXCRS- T helper cell subests
singlet Live CDA5+ | CD3+CD19- CD4+CDB- CDASRA- [CXCRS- CCR6- singlet Live CD45+/CD3+CD19-/CD4+CD8- CXCRS-CCR6-T helper cell subsets
singlet Live CDA5+ | CD3+CD19- CD4+CD8- CDASRA- (CXCRS- CCR6- (CXCR3+CCRI0- singlet Live CD45+/CD3+CD19-/CD4+CD8- CXCR3+CCR10-CCR6- T helper cells
singlet Live CDA5+ | CD3+CD19- CD4+CDB- CDASRA- [CXCRS- CCR6- [CXCR3-CCR10- singlet Live CD45+/CD3+CD19-/CD4+CD8- CXCR3-CCR10-CCRG6- T helper cells
singlet Live CDA5+ | CD3+CD19- CD4+CD8- CDA5RA- (CXCRS- CCR6- [CXCR3-CCR10+ singlet Live CD45+/CD3+CD19-/CD4+CD8- CXCR3-CCR10+CCR6- T helper cells
singlet Live CDA5+ | CD3+CD19- CD4+CDB- CDASRA- [CXCRS- (CCRA-CCRG+ singlet Live CD45+/CD3+CD19-/CD4+CD8- CCRA-CCRG+ T helper cells
singlet Live CDA5+ | CD3+CD19- CD4+CD8- CDASRA- (CXCRS- CCRA+CCR6+ singlet Live CD45+/CD3+CD19-/CD4+CD8- CCRA+CCRG+ T helper cells
singlet Live CDA5+ | CD3+CD19- CD4+CDB- CDASRA- [CXCRS- (CCRA+CCR6+ (CCRI0- singlet Live CD45+/CD3+CD19-/CD4+CD8- CCRA+CCR+ CCR10-T helper cells
singlet Live CDA5+ | CD3+CD19- CD4+CD8- CDASRA- (CXCRS- CCRA+CCR6+ [CCRIO+CXCR3- singlet Live CD45+/CD3+CD19-/CD4+CD8- CCRA+CCR6+CXCR3-CCR10+ T helper cells
singlet Live CDA5+ | CD3+CD19- CD4+CD8- CD12710wCD25h; singlet Live CD45+/CD3+CD19-/CD4+CD8- CD12710wCD25high T helper cells
singlet Live CD45+_|CD3+CD19- CD4+CD8- CD1271owCD25higl CCRA+ singlet Live CD45+/CD3+CD19-/CD4+CD8- T regulatory cells
singlet Live CDA5+ | CD3+CD19- CD4+CDB- CD12710wCD25h; CCRa+ HLA-DR+ singlet Live CD45+/CD3+CD19-/CD4+CD8-/CD127lowCD25high/CCRA+ [Activated T regulatory cells (HLA-DR+)
singlet Live CD45+_|CD3+CD19- CD4+CD8- CD127IowCD25higl CCRa+ CD45RO+ singlet Live CD45+/CD3+CD19-/CD4+CD8-/CD127lowCD25high/CCRA+ Memory T regulatory cells
singlet Live CDA5+ | CD3+CD19- CD4+CDB- CD12710wCD25h; CCRa+ CDASRO- singlet Live CD45+/CD3+CD19-/CD4+CD8-/CD127lowCD25high/CCRA+ Naive T regulatory cells
singlet Live CDA5+ | CD3+CD19- CD4+CD8- CCR7+CDA5RA- singlet Live CD45+/CD3+CD19-/CD4+CD8- Central memory T helper cells
singlet Live CDA5+ | CD3+CD19- CD4+CDB- CCR7-CDA5RA+ singlet Live CD45+/CD3+CD19-/CD4+CD8- Effector T helper cell
singlet Live CD45+ | CD3+CD19- CD4+CD8- CCR7-CDA5RA- singlet Live CD45+/CD3+CD19-/CD4+CD8- Effector memory T helper cells
singlet Live CDA5+ | CD3+CD19- CD4+CD8- singlet Live CD45+/CD3+CD19-/CD4+CD8- HLA-DR+ activated T helper cells
singlet Live CDA5+ _|CD3+CD19- CD4+CD8- CCR7+CDASRA+ singlet Live CD45+/CD3+CD19-/CD4+CD8- Naive T helper cells
singlet Live CD45+ [CD3+CD19- CD4-CD8+ singlet Live CD45+/CD3+CD19- Cytotoxic T cells (CD8+ T cells)
singlet Live CDA5+ | CD3+CD19- CD4-CD8 CD38+ singlet Live CD45+/CD3+CD19-/CD4-CD8+ CD38+ activated cytotoxic T cells
singlet Live CDA5+ | CD3+CD19- CDa-CD8+ CD38+HLA-DR+ singlet Live CD45+/CD3+CD19-/CD4-CD8+ CD38+ HLA-DR+ activated cytotoxic T cells
singlet Live CDA5+ | CD3+CD19- CD4-CD8Y CCR7+CDA5RA- singlet Live CDA5+/CD3+CD19-/CD4-CD8+ Central memory cytotoxic T cells
singlet Live CDA5+ _|CD3+CD19- CDa-CD8+ CCR7-CDA5RA+ singlet Live CD45+/CD3+CD19-/CD4-CD8+
singlet Live CD45+ | CD3+CD19- CD4-CD8Y CCR7-CDA5RA- singlet Live CD45+/CD3+CD19-/CD4-CD8+
singlet Live CDA5+ _|CD3+CD19- CD4-CD8+ HLA-DR+ singlet Live CD45+/CD3+CD19-/CD4-CD8+
singlet Live CDA5+_|CD3+CD19- CDa-CDB+ CCR7+CDASRA+ singlet Live CD45+/CD3+CD19-/CD4-CDB+ aive cytotoxic T cells
singlet Live CDA5+ _|CD3+CD19- CD4-CDS- singlet Live CD45+/CD3+CD19- CD4-CD8- T cells
singlet Live CDA5+_|CD3+CD19- CDA+CD8 singlet Live CD45+/CD3+CD19- CD4+CD8+ T cells
singlet Live CDA5+ _|CD3-CD19- singlet Live CDA5+ CD3-CD19- cells
singlet Live CD45+ | CD3-CD19- CD14-HLA-DR+ Singlet Live CDA5+ Denditic cells
singlet Live CDA5+_|CD3-CD19- CD14-HLA-DR+ CDI1c+CD123- singlet Live CD45+ [ Myeloid Dendritc cell
singlet Live CDA5+_|CD3-CD19- CD14-HLA-DR+ CD11c-CD123+ singlet Live CDA5+ Plasmacytoid Dendritic cells

1 singlet Live CDA5+ _|CD3-CD19- CD14-HLA-DR- singlet Live CD45+ containing and NK cells

2 singlet Live CDA5+_|CD3-CD19- CD14-HLA-DR- CD123+CDS6- singlet Live CDA5+ Basophils

3 singlet Live CDA5+ | CD3-CD19- CD14-HLA-DR- CD123-CDS6- singlet Live CDA5+

a4 singlet Live CDA5+ | CD3-CD19- CD14-HLA-DR- CD123-CDS6+ singlet Live CDA5+ |NK cells

a5 singlet Live CDA5+ | CD3-CD19- CD14-HLA-DR- CD123-CDS6+ CD16+ singlet Live CD45+/CD3-CD19-/CD14-HLA-DR-/CD123-CDS6+ CD16+ NK cells

6 singlet Live CD45+ |CD3-CD19- CD14-HLA-DR- CD123-CDS6+ CD56highCD16l singlet Live CD45+/CD3-CD19-/CD14-HLA-DR-/CD123-CDS6+ CDS56highCD16low NK cells

a7 singlet Live CDA5+ | CD3-CD19- CD14-HLA-DR- CD123-CDS6+ CDS6lowCD16low singlet Live CD45+/CD3-CD19-/CD14-HLA-DR-/CD123-CDS6+ CD56lowCD16low NK cells

8 singlet Live CDA5+ | CD3-CD19- D14+ singlet Live CDA5+

a9 singlet Live CDA5+ | CD3-CD19- D14+ CD16- singlet Live CD45+/CD3-CD19-/CD14+ Classical Monocytes

50 singlet Live CDA5+ | CD3-CD19- D14+ CD16-HLA-DR- singlet Live CD45+/CD3-CD19-/CD14+ containing MDSCs subsets

51 singlet Live CDA5+ | CD3-CD19- D14+ D16+ singlet Live CD45+/CD3-CD19-/CD14+ Non-classical Monocytes

52 singlet Live CDA5+ _|CD3-CD19+ singlet Live CD45+ CD19+ B cells

53 singlet Live CDA5+ _|CD3-CD19+ CD20+ singlet Live CD45+ CD19+CD20+ transitional B cells

54 singlet Live CDA5+ _|CD3-CD19+ CD20+ CD24+CD38+ singlet Live CD45+/CD3-CD19+/CD20+ CD24+CD38+ transitional B cells

55 singlet Live CDA5+ _|CD3-CD19+ CD20+ 1gD-CD27- singlet Live CD45+/CD3-CD19+/CD20+ 1gD-CD27- B cells

56 singlet Live CDA5+ _|CD3-CD19+ CD20+ 1gD+CD27+ singlet Live CD45+/CD3-CD19+/CD20+ Memory IgD+ B cells

57 singlet Live CDA5+ _|CD3-CD19+ CD20+ 1gD-CD27+ singlet Live CD45+/CD3-CD19+/CD20+ Memory IgD-B cells

58 singlet Live CDA5+ | CD3-CD19+ CD20+ 1gD+CD27- singlet Live CD45+/CD3-CD19+/CD20+ Naive B cells
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Extended Data Table 2 | Antibodies and dilutions used for high dimensional flow cytometry

Specificity Fluorochrime AB clone vendor cat# Dilution

CD197 BUV395 150503 BD CUSTOM 1:20
Dead cells Live/Dead Blue ThermoFisher L23105 1:780
CD16 BUV496 3G8 BD 612944 1:80
HLA-DR BUV661 G46-6 BD 612980 1:80
CD196 BUV737 11A9 BD 564377 1:80
CD183 (CXCR3) BUV805 IC6/CXCR3  BD 742048 1:50
IgD Bv421 IA6-2 BD 562518 1:80
CD4 eFlour450 (V450) SK3 BD 560345 1:50
CD127 BV480 HIL-7R-M21 BD 566101 1:40
CD19 BV570 HIB19 BD CUSTOM 1:40
CD194 (CCR4) BV605 1G1 Biolegend 359418 1:40
CD123 BV650 7G3 BD 563405 1:80
CD25 BV711 2A3 BD 563159 1:20
CDh14 BV750 M5E2 BD 746920 1:40
CD27 BV786 L128 BD 563327 1:80
CD45RA BB515 H100 BD 564552 1:400
CD38 PerCP-Cy5.5 HIT2 BD 5514000 1:20
CD24 BB700 ML5 BD 566524 1:20
CD45 BB790 HI30 BD CUSTOM 1:400
CD8 PE RPA-T8 BD 555367 1:100
CD45RO PE-Texas Red UCHL1 Beckman Coulter IM2712U 1:80
CD11c Pe-Cy5 B-Ly6 BD 551077 1:20
CD20 Pe-Cy5.5 H147 ThermoFisher MHCD2018 1:20
CD185 (CXCR5) Pe-Cy7 RF8B2 Biolegend 356924 1:40
CCR10 AlexaFlour 647 (APC) 314305 R&D Systems FAB3478A 1:20
CD56 APC-R700 NCAM 16.2 BD 566139 1:80

CD3 APC-H7 SK7 BD 560176 1:22
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Data analysis Nutritional data: ProNutra software v.3.4; Flow cytometry data: FlowJo software version 10 (BD Biosciences); RNA-seq data: bcl2fastq
(Illumina) v2.17.1.14, STAR aligner version 2.7.9a, Ingenuity Pathway Analysis (IPA) version January 2023, R packages: LIMMA, FGSEAR,
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All RNA-seq raw data is publicly available through dbGAP:

(https://www.ncbi.nIm.nih.gov/projects/gapprev/gap/cgi-bin/study.cgi?study_id=phs003187.v1.p1). Microbiome sequencing data is available through BioProject
accession PRINA981159.

For analysis of nutritional data USDA National Nutrient Database for Standard Reference, Release 26 (https://www.ars.usda.gov/ARSUSERFILES/80400535/DATA/
SR26/SR26_DOC.PDF) and the USDA Food and Nutrient Database for Dietary Studies, 4.0. Foods (https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/
beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/) were used. For RNA-seq analysis, reads were mapped
to the human genome (version hg38) (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/). For analysis of gene expression from sorted cell
populations from the blood, as well as to analyze tissue origin from proteins the human protein atlas (https://www.proteinatlas.org/) was utilized. For functional
annotation analysis, we utilized the MSIGDB'’s Hallmark collection (https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp) and blood transcription
modules database (https://github.com/shuzhao-li/BTM). For microbiome analysis the maxikraken2 DB (https://lomanlab.github.io/mockcommunity/
mc_databases.html) (v_1903_140GB) was utilized, as well as KEGG DB (https://www.genome.jp/kegg/pathway.html), the enzyme nomenclature (EC) DB (https://
enzyme.expasy.org/), the MetaCyc DB (https://metacyc.org/), the dbCAN DB (https://bcb.unl.edu/dbCAN/), and the CAZy DB (http://www.cazy.org/).
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analysis due to small sample size (6); Metagenomics: no analysis due to small sample size (10); Somalogic (20 samples):
differences in response to diet between genders was analyzed and reported; Metabolomics (20 samples): differences in
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excluded based on several diseases and treatments during screening process. During the analysis of this study, no health and
diagnosis information was used for analysis in this manuscript due to the small sample size of only 20 participants. For more
details see Hall et al., Nature Medicine, PMID: 33479499.

Recruitment Participants were recruited through the NIH Office of Patient recruitment beginning in February of 2019. No potential self-
selection bias was identified. For more details see Hall et al., Nature Medicine, PMID: 33479499.

Ethics oversight Institutional Review Board of the National Institute of Diabetes & Digestive & Kidney Diseases (NCT03878108). The study
protocol is available on the Open Science Framework website (https://osf.io/fjyka/).
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Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The study was powered for it's primary study goal of identifying if there is a difference in calorie intake between a high-carbohydrate, low-fat
(vegan) diet and a low-carbohydrate, high-fat (ketogenic) diet. More details are provided in the original publication of this study cohort (Hall
et al., Nature Medicine, PMID: 33479499). Due to sample availability, not all assays could be performed on all participants. In total we
collected 7 samples for flow-cytometry assays, 6 samples for RNA-seq assays, 10 samples for metagenomics assays, (microbiome), 20 samples
for metabolomics assays, and 20 samples for proteomics assays.
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Data exclusions  One participant was removed from study due to a hypoglycemia episode (see Hall et al., Nature Medicine, PMID: 33479499 for more details).
One metagenomics data set was removed because the data collection days for baseline and first diet were too close together confounding the
analysis.

Replication Our results have not been replicated yet.

Randomization  Randomization of diet order was conducted by the NIH Clinical Center Nutrition Department using an online randomization program (https://
www.sealedenvelope.com/simple-randomiser/v1/lists). The randomization scheme was not revealed to participants, study investigators or
staff. For more details see Hall et al., Nature Medicine, PMID: 33479499.

Blinding Due to the nature of the diet interventions, once the food was delivered blinding of the subjects, investigators, or staff was not possible.

However, all subjects were blinded to the primary and secondary aims of this study and were blinded to their data, including daily weight,
glucose, and ketone measurements. For more details see Hall et al., Nature Medicine, PMID: 33479499.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
IZ Antibodies |:| ChiIP-seq
|:| Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology and archaeology IZI |:| MRI-based neuroimaging

|:| Animals and other organisms
Clinical data

[] pual use research of concern

NOXXNX[ s

Antibodies

Antibodies used CD197 (BD Biosciences, BUV395, cat# custom, clone: 150503), Live/Dead stain (ThermoFisher, Live/Dead Blue, cat# L23105), CD16
(BD Biosciences, BUV496, cat# 612944, clone: 3G8), HLA-DR (BD Biosciences, BUV661, cat# 612980, clone: G46-6), CD196 (BD
Biosciences, BUV737, cat# 564377, clone: 11A9), CD183/CXCR3 (BD Biosciences, BUV805, cat# 742048, clone: IC6/CXCR3), IgD (BD
Biosciences, BV421, cat# 562518, clone: IA6-2), CD4 (BD Biosciences, eFlour450 (V450), cat# 560345, clone: SK3), CD127 (BD
Biosciences, BV480, cat# 566101, clone: HIL-7R-M21), CD19 (BD Biosciences, BV570, cat# custom, clone: HIB19), CD194/CCR4
(Biolegend, BV605, cat# 359418, clone: 1G1), CD123 (BD Biosciences, BV650, cat# 563405, clone: 7G3), CD25 (BD Biosciences,
BV711, cat# 563159, clone: 2A3), CD14 (BD Biosciences, BV750, cat# 746920, clone: M5E2), CD27 (BD Biosciences, BV786, cat#
563327, clone: L128), CD45RA (BD Biosciences, BB515, cat# 564552, clone: H100), CD38 (BD Biosciences, PerCP-Cy5.5, cat# 5514000,
clone: HIT2), CD24 (BD Biosciences, BB700, cat# 566524, clone: ML5), CD45 (BD Biosciences, BB790, cat# custom, clone: HI30), CD8
(BD Biosciences, PE, cat# 555367, clone: RPA-T8), CD45RO (Beckman Coulter, PE-Texas Red, cat# IM2712U, clone: UCHL1), CD11c
(BD Biosciences, Pe-Cy5, cat#: 551077, clone: B-Ly6), CD20 (ThermoFisher, Pe-Cy5.5, cat# MHCD2018, clone: HI47), CD185/CXCR5
(Biolegend, Pe-Cy7, cat# 356924, clone: RF8B2), CCR10 (R&D Systems, AlexaFlour 647 (APC), cat# FAB3478A, clone: 314305), CD56
(BD Biosciences, APC-R700, cat# 566139, clone: NCAM 16.2), CD3 (BD Biosciences, APC-H7, cat# 560176, clone: SK7)

Validation All antibodies have been validated by the vendors. For BD Biosciences: The specificity is confirmed using multiple methodologies that
may include a combination of flow cytometry, immunofluorescence, immunohistochemistry or western blot to test staining on a
combination of primary cells, cell lines or transfectant models. All flow cytometry reagents are then titrated on the relevant positive
and negative cell populations. ThermoFisher: The specificity of the antibody is validated by using a comprehensive approach that is
tailored to the antibody target and the relevant application including Independent Antibody Verification by utilizing two independent
antibodies for the same protein target that target nonoverlapping epitopes of an antigen and confirming similar results with multi-
lysate western blots, IHC arrays, immunofluorescence of multiple cell lines, immunoprecipitation, flow cytometry, and other antibody
applications. Biolegend: For quality control each lot of each antibody is quality control tested by immunofluorescent staining with
flow cytometric analysis. Beckman Coulter: All antibodies are validated against the clinical standards CE-IVD and ASR. R&D Systems:
Each antibody is manufactured manufactured under compliance with 1ISO 9001:2015 and/or ISO 13485:2016/MDSAP guidelines,
undergoing rigorous quality control testing to ensure lot-to-lot consistency and outstanding performance. All antibodies are tested
for cross-reactivity with closely related molecules using a variety of applications, including direct ELISA, to ensure specificity.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  ClincalTrails.gov Identifier NCT03878108

Study protocol The full protocol is available at the Open Science Framework website (https://osf.io/)
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Data collection The study was conducted from April of 2019 to March of 2020 at the Metabolic Clinical Research Unit of the NIH Clinical Center.

Outcomes The first primary outcome compared the mean intake between each two-week diet period. The second primary outcome compared
the mean energy intake on the second week of each diet period. These results were reported in Hall et al., Nature Medicine, PMID:
33479499. The primary exploratory aim of this study was to compare changes in immunity, microbiome composition and function,
and metabolite profile between each two-week period of diet. These results are reported in this manuscript.

Flow Cytometry

Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
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All plots are contour plots with outliers or pseudocolor plots.

g A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation PBMC from 21 samples were thawed and washed in RPMI containing 50U/ml benzonase nuclease then PBS. Cells were
incubated with LIVE/DEAD Fixable Blue Dye (Life Technologies), washed and re-suspended in 100ul of FACS buffer (PBS with
0.5% fetal calf serum, 0.5% normal mouse serum and 0.02% NaN3), before incubation for 30 minutes with fluorochrome-
conjugated antibodies. Cells were washed an additional two times with FACS buffer, fixed in 1% paraformaldehyde, and
acquired using an Aurora spectral cytometer (Cytek Biosciences).

Instrument Aurora spectral cytometer (Cytek Biosciences)

Software Data collection was performed with the Aurora spectral cytometer software SpectroFlo version 2.2.0. For analysis FlowJo
software version 10 (BD Biosciences) was used.

Cell population abundance No cell population was sorted.

Gating strategy Cell populations were gated and assessed based on previous reports (PMID: 29288606).

& Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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