Study Title
Microbial Modulation of Energy Availability in the Colon Regulates Intestinal Transit
Cell Host & Microbe

Anita Wichmann, Ava Allahyar, Thomas U. Greiner, Hubert Plovier, Gunnel Ostergren Lunden, Thomas Larsson, Daniel J. Drucker, Nathalie M. Delzenne, Patrice D. Cani, and Fredrik Backhed


Gut microbiota contribute to host metabolic efficiency by increasing energy availability through the fermentation of dietary fiber and production of short-chain fatty acids (SCFAs) in the colon. SCFAs are proposed to stimulate secretion of the proglucagon (Gcg)-derived incretin hormone GLP-1, which stimulates insulin secretion (incretin response) and inhibits gastric emptying. We find that germ- free (GF) and antibiotic-treated mice, which have severely reduced SCFA levels, have increased basal GLP-1 levels in the plasma and increased Gcg expression in the colon. Increasing energy supply, either through colonization with polysaccharide- fermenting bacteria or through diet, suppressed colonic Gcg expression in GF mice. Increased GLP-1 levels in GF mice did not improve the incretin response but instead slowed intestinal transit. Thus, microbiota regulate the basal levels of GLP-1, and increasing these levels may be an adaptive response to insufficient energy availability in the colon that slows intestinal transit and allows for greater nutrient absorption.

November 13, 2013
View study

Share This

Related Topics

PrebioticsPPIMicrobiomeAntibioticsWeight LossObesityProbiotics

Dr. Perlmutter is one of the leading lights in medicine today, illuminating the path for solving chronic illness

Mark Hyman, MD