Study Title
Retrospectively reported childhood physical abuse, systemic inflammation, and resting corticolimbic connectivity in midlife adults
Brain, Behavior, and Immunity

Thomas E. Kraynak, Anna L. Marsland, Jamie L. Hanson, Peter J. Gianaros


Childhood abuse confers risk for psychopathology and pathophysiology in midlife through intermediate pathways that remain unclear. Systemic inflammation was tested in the present study as one pathway that may link physical abuse in childhood to the adult functioning of corticolimbic brain circuits broadly implicated in risk for poor mental and physical health. Midlife adults (N=303; 30–51 years of age; 149 women) without psychiatric, immune, or cardiovascular diagnoses provided retrospective reports of childhood physical abuse. Functional connectivity between corticolimbic brain areas (amygdala, hippocampus, ventromedial prefrontal cortex [vmPFC], anterior cingulate cortex [ACC]) was measured at rest using functional magnetic resonance imaging. Circulating levels of interleukin(IL)-6, a pro-inflammatory cytokine previously linked to childhood abuse and corticolimbic functionality, were measured via blood draw. Consistent with prior studies, retrospectively reported childhood physical abuse was associated positively with circulating IL-6, and negatively with connectivity between the amygdala and vmPFC. IL-6 was also associated negatively with several corticolimbic functional connections, including amygdala-vmPFC connectivity. Moreover, path analyses revealed an indirect effect of IL-6 that partially explained the association between childhood physical abuse and adult amygdala-vmPFC connectivity. Consistent with recent neurobiological models of early life influences on disease risk across the lifespan, associations between childhood physical abuse and adulthood corticolimbic circuit functionality may be partially explained by inflammatory processes.

August 21, 2019
View study

Share This

Related Topics

DIsconnection syndromeInflammation

Dr. Perlmutter is one of the leading lights in medicine today, illuminating the path for solving chronic illness

Mark Hyman, MD